Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Hands-on Modular Laboratory Environment to Foster Learning in Control System Security

    Thumbnail
    View/Open
    Deshmukh_PP_T_2016.pdf (13.89Mb)
    Downloads: 2143
    Date
    2016-07-07
    Author
    Deshmukh, Pallavi Prafulla
    Metadata
    Show full item record
    Abstract
    Cyber-Physical Systems (CPSes) form the core of Industrial Control Systems (ICS) and critical infrastructures. These systems use computers to control and monitor physical processes in many critical industries including aviation, industrial automation, transportation, communications, waste treatment, and power systems. Increasingly, these systems are connected with corporate networks and the Internet, making them susceptible to risks similar to traditional computing systems experiencing cyber-attacks on a conventional IT network. Furthermore, recent attacks like the Stuxnet worm have demonstrated the weaknesses of CPS security, which has gained much attention in the research community to develop more effective security mechanisms. While this remains an important topic of research, often CPS security is not given much attention in undergraduate programs. There can be a significant disconnect between control system engineers with CPS engineering skills and network engineers with an IT background. This thesis describes hands-on courseware to help students bridge this gap. This courseware incorporates cyber-physical security concepts into effective learning modules that highlight real-world technical issues. A modular learning approach helps students understand CPS architectures and their vulnerabilities to cyber-attacks via experiential learning, and acquire practical skills through actively participating in the hands-on exercises. The ultimate goal of these lab modules is to show how an adversary would break into a conventional CPS system by exploiting various network protocols and security measures implemented in the system. A mock testbed environment is created using commercial-off-the-shelf hardware to address the unique aspects of a CPS, and serve as a cybersecurity trainer for students from control system or IT backgrounds. The modular nature of this courseware, which uses an economical and easily replicable hardware testbed, make this experience uniquely available as an adjunct to a conventional embedded system, control system design, or cybersecurity courses. To assess the impact of this courseware, an evaluation survey is developed to measure the understanding of the unique aspects of CPS security addressed. These modules leverage the existing academic subjects, help students understand the sequence of steps taken by adversaries, and serve to bridge theory and practice.
    URI
    http://hdl.handle.net/10919/71755
    Collections
    • Masters Theses [21549]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us