Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gait and Morphology Optimization for Articulated Bodies in Fluids

    Thumbnail
    View/Open
    Allen_DW_D_2016.pdf (7.000Mb)
    Downloads: 630
    Date
    2016-08-16
    Author
    Allen, David William
    Metadata
    Show full item record
    Abstract
    The contributions of this dissertation can be divided into three primary foci: input waveform optimization, the modeling and optimization of fish-like robots, and experiments on a flapping wing robot. Novel contributions were made in every focus. The first focus was on input waveform optimization. This goal of this research was to develop a means by which the optimal input waveforms can be selected to vibrationally stabilize a system. Vibrational stabilization is the use of high-frequency, high-amplitude periodic waveforms to stabilize a system about a desired state. The contributions presented herein develop a technique to choose the ``best" input waveform and a discussion of how the ``best" input waveform changes with the definition of ``best." The next focus was the optimization of a fish-like robot. In order to optimize such robots, a new model for fish-like locomotion is developed. An optimization technique that uses numerous simulations of fish-like locomotion was used to determine the best gaits for traveling at various speeds. Based on these results, trends were found that can determine the optimal gait using a couple relatively simple functions. The final focus was experimentation on a flapping wing robot in a wind tunnel. These experiments determined the performance of the flapping wing robot at a variety of flight conditions. The results of this research were presented in manner that is accessible to the larger aircraft design community rather than only to those specializing in flapping flight.
    URI
    http://hdl.handle.net/10919/72272
    Collections
    • Doctoral Dissertations [14916]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us