Spatial Relationships Between Potential Bioavailable Organic Carbon and Sediment Grain Size at a Chlorinated Solvent-Contaminated Site
Abstract
The variability and distribution of potential bioavailable organic carbon (PBOC) at a site is relatively unknown and any potential relationships between PBOC and the physical properties of the aquifer sediment have not been evaluated. Exploring relationships between the grain size of aquifer sediment PBOC may help to determine the feasibility of natural attenuation as a long-term remediation strategy at chlorinated ethene-contaminated sites. Because hydraulic conductivity is directly related to aquifer sediment grain size, zones of high hydraulic conductivity may promote greater microbial activity or biodegradation because of the increased availability of PBOC and nutrient flux.
To determine potential relationships between PBOC and aquifer sediment grain size, two experiments were performed. PBOC was measured for 106 sediment samples impacted by chlorinated solvent contamination from an anaerobic type II site through a multiple liquid extraction process (Rectanus et al. 2007). Grain size distributions for each of the 106 sediment samples were determined by conducting sieve analyses. The results of both experiments were compared to explore relationships between PBOC and sediment grain size and to evaluate spatial distribution of both in the surficial aquifer.
Collections
- Masters Theses [19615]