Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient methods for computing observation impact in 4D-Var data assimilation

    Thumbnail
    View/Open
    Submitted Version (1.372Mb)
    Downloads: 34
    Date
    2013-12-01
    Author
    Cioaca, Alexandru
    Sandu, Adrian
    de Sturler, Eric
    Metadata
    Show full item record
    Abstract
    This paper presents a practical computational approach to quantify the effect of individual observations in estimating the state of a system. Such an analysis can be used for pruning redundant measurements, and for designing future sensor networks. The mathematical approach is based on computing the sensitivity of the reanalysis (unconstrained optimization solution) with respect to the data. The computational cost is dominated by the solution of a linear system, whose matrix is the Hessian of the cost function, and is only available in operator form. The right hand side is the gradient of a scalar cost function that quantities the forecast error of the numerical model. The use of adjoint models to obtain the necessary first and second order derivatives is discussed. We study various strategies to accelerate the computation, including matrix-free iterative solvers, preconditioners, and an in-house multigrid solver. Experiments are conducted on both a small-size shallow-water equations model, and on a large-scale numerical weather prediction model, in order to illustrate the capabilities of the new methodology.
    URI
    http://hdl.handle.net/10919/73561
    Collections
    • All Faculty Deposits [4342]
    • Scholarly Works, Computer Science [454]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us