Show simple item record

dc.contributor.authorLouk, Andrew Kyleen
dc.date.accessioned2016-12-23T07:00:24Zen
dc.date.available2016-12-23T07:00:24Zen
dc.date.issued2015-07-01en
dc.identifier.othervt_gsexam:4939en
dc.identifier.urihttp://hdl.handle.net/10919/73806en
dc.description.abstractPermanently sequestering carbon dioxide (CO2) in gas-bearing shale formations is beneficial in that it can mitigate greenhouse gas emissions as well as enhance gas recovery in production wells. This is possible due to the sorption properties of the organic material within shales and their greater affinity for CO2 over methane. The phenomenon of preferentially adsorbing CO2 while desorbing methane has been proven in coalbed reservoirs successfully, and is feasible for shale formations. The objective of this thesis is to explore the potential for enhanced gas recovery from gas-bearing shale formations by injecting CO2 into a targeted shale formation. With the advancement of technologies in horizontal drilling combined with hydraulic fracturing, shale gas has become a significant source of energy throughout the United States. With over 6,000 trillion cubic feet (Tcf) of theoretical gas-in-place, Appalachia has proven a major basin for gas production from organic shales. With its extensive shale reserves and lack of conventional reservoirs typically used for CO2 storage, Appalachia's unconventional reservoirs are favorable candidates for CO2 storage with enhanced gas recovery. Enhancing gas recovery not only increases reserves, but extends the life of mature wells and fields throughout the basin. As part of this research, 510 tons of CO2 were successfully injected into a horizontal production well completed in the Chattanooga shale formation, a late Devonian shale, in Morgan County, Tennessee. An extensive monitoring program was implemented during the pre-injection baseline, injection, soaking, and flowback phases of the test. Multiple fluorinated tracers were used to monitor for potential CO2 breakthrough at offset production wells and to help account for the CO2 once the well was flowed back. Results from this test, once the well was put back into normal production state, confirm the injectivity and storage potential of CO2 in shale formations, as well as an increase in gas production rate and quality of gas produced.en
dc.format.mediumETDen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectCO2 Sequestrationen
dc.subjectEnhanced Gas Recoveryen
dc.subjectShaleen
dc.subjectTracer Gasesen
dc.titleMonitoring for Enhanced Gas and Liquids Recovery from a CO2 'Huff-and-Puff' Injection Test in a Horizontal Chattanooga Shale Wellen
dc.typeThesisen
dc.contributor.departmentMining and Minerals Engineeringen
dc.description.degreeMaster of Scienceen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelmastersen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.disciplineMining Engineeringen
dc.contributor.committeechairRipepi, Nino S.en
dc.contributor.committeechairLuxbacher, Kramer Davisen
dc.contributor.committeememberKarmis, Michael E.en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record