Fluorescent in situ Hybridization on Mitotic Chromosomes of Mosquitoes

TR Number
Date
2012-09-01
Journal Title
Journal ISSN
Volume Title
Publisher
Journal of Visualized Experiments
Abstract

Fluorescent in situ hybridization (FISH) is a technique routinely used by many laboratories to determine the chromosomal position of DNA and RNA probes. One important application of this method is the development of high-quality physical maps useful for improving the genome assemblies for various organisms. The natural banding pattern of polytene and mitotic chromosomes provides guidance for the precise ordering and orientation of the genomic supercontigs. Among the three mosquito genera, namely Anopheles, Aedes, and Culex, a well-established chromosome-based mapping technique has been developed only for Anopheles, whose members possess readable polytene chromosomes. As a result of genome mapping efforts, 88% of the An. gambiae genome has been placed to precise chromosome positions. Two other mosquito genera, Aedes and Culex, have poorly polytenized chromosomes because of significant overrepresentation of transposable elements in their genomes. Only 31 and 9% of the genomic supercontings have been assigned without order or orientation to chromosomes of Ae. aegypti and Cx. quinquefasciatus, respectively. Mitotic chromosome preparation for these two species had previously been limited to brain ganglia and cell lines. However, chromosome slides prepared from the brain ganglia of mosquitoes usually contain low numbers of metaphase plates. Also, although a FISH technique has been developed for mitotic chromosomes from a cell line of Ae. aegypti, the accumulation of multiple chromosomal rearrangements in cell line chromosomes makes them useless for genome mapping. Here we describe a simple, robust technique for obtaining high-quality mitotic chromosome preparations from imaginal discs (IDs) of 4th instar larvae which can be used for all three genera of mosquitoes. A standard FISH protocol is optimized for using BAC clones of genomic DNA as a probe on mitotic chromosomes of Ae. aegypti and Cx. quinquefasciatus, and for utilizing an intergenic spacer (IGS) region of ribosomal DNA (rDNA) as a probe on An. gambiae chromosomes. In addition to physical mapping, the developed technique can be applied to population cytogenetics and chromosome taxonomy/systematics of mosquitoes and other insect groups.

Description
Keywords
immunology, issue 67, genetics, molecular biology, entomology, infectious disease, imaginal discs, mitotic chromosomes, genome mapping, fish, fluorescent in situ hybridization, mosquitoes, anopheles, aedes, culex
Citation