Show simple item record

dc.contributor.authorLiu, Wen_US
dc.contributor.authorTäuber, UCen_US
dc.date.accessioned2017-01-06T15:09:46Z
dc.date.available2017-01-06T15:09:46Z
dc.date.issued2016-10-28en_US
dc.identifier.issn1751-8113en_US
dc.identifier.urihttp://hdl.handle.net/10919/73990
dc.description.abstractWe employ the perturbative field-theoretic renormalization group method to investigate the universal critical behavior near the continuous non-equilibrium phase transition in the complex Ginzburg-Landau equation with additive white noise. This stochastic partial differential describes a remarkably wide range of physical systems: coupled non-linear oscillators subject to external noise near a Hopf bifurcation instability; spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations; and driven-dissipative Bose--Einstein condensation, realized in open systems on the interface of quantum optics and many-body physics, such as cold atomic gases and exciton-polaritons in pumped semiconductor quantum wells in optical cavities. Our starting point is a noisy, dissipative Gross-Pitaevski or non-linear Schr\"odinger equation, or equivalently purely relaxational kinetics originating from a complex-valued Landau-Ginzburg functional, which generalizes the standard equilibrium model A critical dynamics of a non-conserved complex order parameter field. We study the universal critical behavior of this system in the early stages of its relaxation from a Gaussian-weighted fully randomized initial state. In this critical aging regime, time translation invariance is broken, and the dynamics is characterized by the stationary static and dynamic critical exponents, as well as an independent `initial-slip' exponent. We show that to first order in the dimensional expansion about the upper critical dimension, this initial-slip exponent in the complex Ginzburg-Landau equation is identical to its equilibrium model A counterpart. We furthermore employ the renormalization group flow equations as well as construct a suitable complex spherical model extension to argue that this conclusion likely remains true to all orders in the perturbation expansion.en
dc.format.extent? - ? (17) page(s)en_US
dc.languageEnglishen_US
dc.publisherIop Publishing Ltden_US
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000385765100001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en_US
dc.subjectPhysics, Multidisciplinaryen_US
dc.subjectPhysics, Mathematicalen_US
dc.subjectPhysicsen_US
dc.subjectcritical agingen_US
dc.subjectnon-equilibrium relaxationen_US
dc.subjectcomplex Ginzburg-Landau equationen_US
dc.subjectdriven-dissipative Bose-Einstein condensationen_US
dc.subjectrenormalization groupen_US
dc.subjectNONEQUILIBRIUM CRITICAL RELAXATIONen_US
dc.subjectCRITICAL-DYNAMICSen_US
dc.subjectSUPERCONDUCTING CIRCUITSen_US
dc.subjectRENORMALIZATION-GROUPen_US
dc.subjectQUANTUM SIMULATIONen_US
dc.subjectMONTE-CARLOen_US
dc.subjectBEHAVIORen_US
dc.titleCritical initial-slip scaling for the noisy complex Ginzburg-Landau equationen_US
dc.typeArticle - Refereed
dc.description.versionPublished (Publication status)en_US
dc.title.serialJOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICALen_US
dc.identifier.doihttps://doi.org/10.1088/1751-8113/49/43/434001
dc.identifier.volume49en_US
dc.identifier.issue43en_US
pubs.organisational-group/Virginia Tech
pubs.organisational-group/Virginia Tech/All T&R Faculty
pubs.organisational-group/Virginia Tech/Science
pubs.organisational-group/Virginia Tech/Science/COS T&R Faculty
pubs.organisational-group/Virginia Tech/Science/Physics


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record