Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stream aufwuchs accumulation

    Thumbnail
    View/Open
    LD5655.V856_1981.K436.pdf (14.65Mb)
    Downloads: 357
    Date
    1981
    Author
    Kaufman, Laurence Harvey
    Metadata
    Show full item record
    Abstract
    I investigated the Aufwuchs accumulation process on glass slides (chlorophyll, adenosine triphosphate, and diatoms) in experimental streams near Glen Lyn VA (Phase I) and in Stroubles Creek near Blacksburg VA (Phase II). Depopulation experiments carried out during Phase I supported my hypothesis that accumulation rates are greater in reference than in depopulated streams. The effects of depopulation on Aufwuchs biomass accumulation disappeared in about two weeks indicating the rapidity of recovery from short-term catastrophic events. Variability anong replicate slides was generally lower after shorter submergence times than after longer times. In disturbance frequency experiments carried out during Phase I, Aufwuchs accumulation depended on the frequency of copper disturbance. Accumulation was faster in the low stress streams (LSS) than in the high stress streams (HSS) • Resistance of Aufwuchs conununities to an additional Cu disturbance was greater in HSS than in LSS. Resilience of Aufwuchs biomass to the additional disturbance was lower in the LSS than in HSS. Stress resistance tended to be an inverse function of community age and to be greater in HSS than in LSS. Diatom species and diversity were greater in LSS than in HSS. In Stroubles Creek I tested the effect 6f five factors on the Aufwuchs accumulation process and found biomass accumulation was greater in summer than in fall, in riffles than in pools, and in open than in shaded sites. Accumulation differences were not significantly different between upstream and downstream locations or between depopulated and reference areas. Biomass accumulation rates decreased inversely with submergence time. Biomass variability tended to be lower for shorter submergence times and in riffles than in pools. The autotrophic ratio decreased with submergence time. Diatom species number and diversities increased with submergence time.
    URI
    http://hdl.handle.net/10919/74202
    Collections
    • Doctoral Dissertations [16009]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us