Load Testing Deteriorated Spans of the Hampton Roads Bridge-Tunnel for Load Rating Recommendations

TR Number
Date
2017-01-12
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The Hampton Roads Bridge-Tunnel is one of the oldest prestressed concrete structures in the United States. The 3.5 mile long twin structure includes the world's first underwater tunnel between two man-made islands. Throughout its 60 years in service, the harsh environment along the Virginia coast has taken its toll on the main load carrying girders. Concrete spalling has exposed prestressing strands within the girders allowing corrosion to spread. Some of the more damaged girders have prestressing strands that have completely severed due to the extensive corrosion. The deterioration has caused select girders to fail the necessary load ratings. The structure acts as an evacuation route for the coast and is a main link for the local Norfolk Naval Base and surrounding industry. Because of these constraints, load posting is not a viable option.

Live load testing of five spans was performed to investigate the behavior of the damaged spans. Innovative techniques were used during the load test including a wireless system to measure strains. Two different deflection systems were implemented on the spans, which were located about one mile offshore. The deflection data was later compared head to head. From the load test results, live load distribution factors were developed for both damaged and undamaged girders. The data was also used by the local Department of Transportation to validate computer models in an effort to help pass the load rating. Overall, this research was at the forefront of the residual strength of prestressed concrete girders and the testing of in-service bridges.

Description
Keywords
Deteriorated Prestressed Concrete Girders, Live Load Test, Live Load Distribution Factors, Bridge-Tunnel, Offshore Deflection Measurement System
Citation
Collections