Show simple item record

dc.contributor.authorElliott, Rachelen_US
dc.contributor.authorLewers, Mark E.en_US
dc.contributor.authorMihalcea, Leonardo C.en_US
dc.coverage.spatialUSAen_US
dc.date.accessioned2017-01-22T17:34:34Z
dc.date.available2017-01-22T17:34:34Z
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/10919/74409
dc.description.abstractWe study some combinatorial objects related to the flag manifold X of Lie type G2. Using the moment graph of X we calculate all the curve neighborhoods for Schubert classes. We use this calculation to investigate the ordinary and quantum cohomology rings of b. As an application, we obtain positive Schubert polynomials for the cohomology ring of X and we find quantum Schubert polynomials which represent Schubert classes in the quantum cohomology ring of X.en
dc.format.extent437 - 451 page(s)en_US
dc.titleQuantum Schubert polynomials for the G2 flag manifolden_US
dc.typeArticle - Refereed
dc.description.versionPublished (Publication status)en_US
dc.title.serialInvolveen_US
dc.identifier.volume9en_US
dc.identifier.issue3en_US
pubs.organisational-group/Virginia Tech
pubs.organisational-group/Virginia Tech/All T&R Faculty
pubs.organisational-group/Virginia Tech/Science
pubs.organisational-group/Virginia Tech/Science/COS T&R Faculty
pubs.organisational-group/Virginia Tech/Science/Mathematics


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record