Show simple item record

dc.contributor.authorYang, Wanen
dc.contributor.authorMarr, Linsey C.en
dc.date.accessioned2017-02-04T19:25:38Zen
dc.date.available2017-02-04T19:25:38Zen
dc.date.issued2011-06-24en
dc.identifier.issn1932-6203en
dc.identifier.urihttp://hdl.handle.net/10919/74932en
dc.description.abstractThere is mounting evidence that the aerosol transmission route plays a significant role in the spread of influenza in temperate regions and that the efficiency of this route depends on humidity. Nevertheless, the precise mechanisms by which humidity might influence transmissibility via the aerosol route have not been elucidated. We hypothesize that airborne concentrations of infectious influenza A viruses (IAVs) vary with humidity through its influence on virus inactivation rate and respiratory droplet size. To gain insight into the mechanisms by which humidity might influence aerosol transmission, we modeled the size distribution and dynamics of IAVs emitted from a cough in typical residential and public settings over a relative humidity (RH) range of 10–90%. The model incorporates the size transformation of virus-containing droplets due to evaporation and then removal by gravitational settling, ventilation, and virus inactivation. The predicted concentration of infectious IAVs in air is 2.4 times higher at 10% RH than at 90% RH after 10 min in a residential setting, and this ratio grows over time. Settling is important for removal of large droplets containing large amounts of IAVs, while ventilation and inactivation are relatively more important for removal of IAVs associated with droplets ,5 mm. The inactivation rate increases linearly with RH; at the highest RH, inactivation can remove up to 28% of IAVs in 10 min. Humidity is an important variable in aerosol transmission of IAVs because it both induces droplet size transformation and affects IAV inactivation rates. Our model advances a mechanistic understanding of the aerosol transmission route, and results complement recent studies on the relationship between humidity and influenza’s seasonality. Maintaining a high indoor RH and ventilation rate may help reduce chances of IAV infection.en
dc.description.sponsorshipNational Science Foundationen
dc.description.sponsorshipNSF: CBET-0547107en
dc.format.extent? - ? (10) page(s)en
dc.languageEnglishen
dc.publisherPLOSen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000292036900038&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectMultidisciplinary Sciencesen
dc.subjectScience & Technology - Other Topicsen
dc.subjectMULTIDISCIPLINARY SCIENCESen
dc.subjectABSOLUTE-HUMIDITYen
dc.subjectSEASONAL FACTORen
dc.subjectSURVIVALen
dc.subjectPOLIOMYELITISen
dc.subjectTRANSMISSIONen
dc.subjectINACTIVATIONen
dc.subjectTEMPERATUREen
dc.subjectPARTICLESen
dc.subjectDROPLETSen
dc.subjectAEROSOLen
dc.titleDynamics of Airborne Influenza A Viruses Indoors and Dependence on Humidityen
dc.typeArticle - Refereeden
dc.description.versionPublished (Publication status)en
dc.title.serialPLOS ONEen
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0021481en
dc.identifier.volume6en
dc.identifier.issue6en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Civil & Environmental Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International