Show simple item record

dc.contributor.authorShen, B.en
dc.contributor.authorDong, L.en
dc.contributor.authorXiao, S.en
dc.contributor.authorLang, X.en
dc.contributor.authorHuang, K.en
dc.contributor.authorPeng, Y.en
dc.contributor.authorZhou, C.en
dc.contributor.authorKe, S.en
dc.contributor.authorLiu, P.en
dc.coverage.spatialEnglanden
dc.date.accessioned2017-02-13T19:13:40Zen
dc.date.available2017-02-13T19:13:40Zen
dc.date.issued2016-01-07en
dc.identifier.urihttp://hdl.handle.net/10919/75017en
dc.description.abstractMolar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.en
dc.format.extent10317 - ? page(s)en
dc.languageengen
dc.relation.urihttp://www.ncbi.nlm.nih.gov/pubmed/26739600en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectCarbonatesen
dc.subjectFossilsen
dc.subjectMagnesiumen
dc.subjectMethaneen
dc.subjectMolaren
dc.subjectOxidation-Reductionen
dc.subjectSulfatesen
dc.subjectSulfidesen
dc.subjectSulfur Isotopesen
dc.titleMolar tooth carbonates and benthic methane fluxes in Proterozoic oceans.en
dc.typeArticle - Refereeden
dc.description.versionPublished online (Publication status)en
dc.contributor.departmentGeosciencesen
dc.title.serialNat Communen
dc.identifier.doihttps://doi.org/10.1038/ncomms10317en
dc.type.otherResearch Support, Non-U.S. Gov'ten
dc.type.otherResearch Support, U.S. Gov't, Non-P.H.S.en
dc.identifier.volume7en
dc.identifier.eissn2041-1723en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Geosciencesen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record