Show simple item record

dc.contributor.authorZhang, Xen_US
dc.contributor.authorYazyev, OVen_US
dc.contributor.authorFeng, Jen_US
dc.contributor.authorXie, Len_US
dc.contributor.authorTao, Cen_US
dc.contributor.authorChen, YCen_US
dc.contributor.authorJiao, Len_US
dc.contributor.authorPedramrazi, Zen_US
dc.contributor.authorZettl, Aen_US
dc.contributor.authorLouie, SGen_US
dc.contributor.authorDai, Hen_US
dc.contributor.authorCrommie, MFen_US
dc.coverage.spatialUnited Statesen_US
dc.date.accessioned2017-02-26T22:07:35Z
dc.date.available2017-02-26T22:07:35Z
dc.date.issued2013-01-22en_US
dc.identifier.urihttp://hdl.handle.net/10919/75175
dc.description.abstractThe edges of graphene nanoribbons (GNRs) have attracted much interest due to their potentially strong influence on GNR electronic and magnetic properties. Here we report the ability to engineer the microscopic edge termination of high-quality GNRs via hydrogen plasma etching. Using a combination of high-resolution scanning tunneling microscopy and first-principles calculations, we have determined the exact atomic structure of plasma-etched GNR edges and established the chemical nature of terminating functional groups for zigzag, armchair, and chiral edge orientations. We find that the edges of hydrogen-plasma-etched GNRs are generally flat, free of structural reconstructions, and terminated by hydrogen atoms with no rehybridization of the outermost carbon edge atoms. Both zigzag and chiral edges show the presence of edge states.en_US
dc.format.extent198 - 202 page(s)en_US
dc.languageengen_US
dc.relation.urihttp://www.ncbi.nlm.nih.gov/pubmed/23194280en_US
dc.subjectComputer Simulationen_US
dc.subjectCrystallizationen_US
dc.subjectGraphiteen_US
dc.subjectMacromolecular Substancesen_US
dc.subjectMaterials Testingen_US
dc.subjectModels, Chemicalen_US
dc.subjectModels, Molecularen_US
dc.subjectMolecular Conformationen_US
dc.subjectNanostructuresen_US
dc.subjectParticle Sizeen_US
dc.subjectSurface Propertiesen_US
dc.titleExperimentally engineering the edge termination of graphene nanoribbons.en_US
dc.typeArticle
dc.description.versionPublished (Publication status)en_US
dc.title.serialACS Nanoen_US
dc.identifier.doihttps://doi.org/10.1021/nn303730v
dc.type.otherResearch Support, Non-U.S. Gov'ten_US
dc.type.otherResearch Support, U.S. Gov't, Non-P.H.S.en_US
dc.identifier.volume7en_US
dc.identifier.issue1en_US
dc.identifier.eissn1936-086Xen_US
pubs.organisational-group/Virginia Tech
pubs.organisational-group/Virginia Tech/All T&R Faculty
pubs.organisational-group/Virginia Tech/Science
pubs.organisational-group/Virginia Tech/Science/COS T&R Faculty
pubs.organisational-group/Virginia Tech/Science/Physics


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record