Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Explicitly structured physics instruction

    Thumbnail
    View/Open
    LD5655.V856_1984.W754.pdf (6.937Mb)
    Downloads: 265
    Date
    1984
    Author
    Wright, David Shaw
    Metadata
    Show full item record
    Abstract
    In an introductory physics course, problem solving skills are not traditionally taught. The instructor explains the physical theory and works example problems. Many students, however, are not able to develop the ability to solve problems implicitly. The program of Explicitly Structured Physics Instruction (ESPI) was developed to teach problem solving skills explicitly. It is designed to help students organize their work, increase their accuracy, eliminate initial panic or lack of direction in approaching a problem, increase confidence in problem solving, promote understanding instead of rote memory, and improve the students' ability to communicate with the instructor and other students. It provides not only an explicit strategy for problem solving, but also a structure for examining formulas called the formula fact sheet, and an opportunity for practice and feedback in a problem solving session which involves the use of out loud thinking. The program of ESPI was developed over five academic quarters of testing. A statistical analysis was performed on the data obtained, but the qualitative data obtained from student interviews and questionnaires, as well as the instructor reaction to the program, provided the main source of input in the development of the program and the measurement of its success. Reaction to the program in its final revised form was very positive. Over 90% said that they would use the strategy even if it were not required, and that the formula fact sheet had been very helpful. Over 75% said that the problem solving session was very helpful. Final grades of those who used the strategy were significantly higher than those who did not. Retention of students in the course was raised from 70% to 86%. The study indicates that a well integrated program built around the use of a problem solving strategy can help students focus on understanding physics and the problem sovling process.
    URI
    http://hdl.handle.net/10919/76083
    Collections
    • Doctoral Dissertations [16366]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us