Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A random parameter approach to modeling and forecasting time series

    Thumbnail
    View/Open
    LD5655.V856_1979.G898.pdf (4.458Mb)
    Downloads: 178
    Date
    1979
    Author
    Guyton, Deborah A.
    Metadata
    Show full item record
    Abstract
    The dependence structure of a stationary time series can be described by its autocorrelation function ρk. Consider the simple autoregressive model of order 1: yt = αyt-1 + ut where α ε (-1, 1) is a fixed constant and the ut's are i.i.d. N(O,σ²). Here ρk = α|k|, k = 0, ± 1, ± 2, . . . . It can be argued that as α ranges from 1 to -1, the behavior of the corresponding AR(1) model changes from that of a slowly changing, smooth time series to that of a rapidly changing time series. This motivates a generalized AR(1) model where the coefficient itself changes stochastically with time: yt = α(t)yt-1 + ut where α(t) is a random function of time. This dissertation gives necessary and sufficient conditions for the existence of a mean zero stochastic process with finite second-order moments which is a solution to the generalized AR(1) model and gives sufficient conditions for the existence of a weakly stationary solution. The theory is illustrated with a specific model structure imposed on the random coefficient α(t); α(t) is modeled as a strictly stationary, two-state Markov chain with states taking on values between 0 and 1. The resulting generalized AR(1) process is shown to be weakly stationary. Techniques are provided for estimating the parameters of this specific model and for obtaining the optimal predictor from the estimated model.
    URI
    http://hdl.handle.net/10919/76550
    Collections
    • Doctoral Dissertations [16009]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us