Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Virus-Based Nanoparticles for Tumor Selective Targeting and Oncolysis

    Thumbnail
    View/Open
    etd-12232010-124413_CHAVAN_VP_T_2010.pdf (2.822Mb)
    Downloads: 151
    Date
    2010-12-08
    Author
    Chavan, Vrushali
    Metadata
    Show full item record
    Abstract
    Many oncolytic virotherapies have shown great advantages for rapid, rational design through recombinant DNA technology to facilitate the targeting of a broad spectrum of malignancies. Newcastle disease virus (NDV), an avian paramyxovirus, is naturally tumor-selective and inherently oncolytic. Our approach is to develop NDV-based nanoparticles (VBNP) for oncolytic virotherapy. VBNPs are non-infectious and non-replicating and are relatively safe. We obtained VBNPs by co-expressing matrix (M), hemagglutinin (HN), and fusion (F) proteins of NDV in avian/ mammalian cells. The budding characteristics, size and morphology of VBNPs were similar to authentic virions. As a proof of concept, we engineered the apoptin (VP3) gene of chicken anemia virus in VBNPs and specifically targeted them to folate-receptor bearing tumor cells by surface conjugation to folate. The VBNPs killed tumor cells by apoptosis and induced proinflammatory and chemotactic cytokines. The VBNPs, although not curative, were able to limit the progression of xenotransplanted fibrosarcoma and malignant glioma tumors and provided a survival advantage in nude mice. We also engineered NDV M based particles with nipah virus surface glycorporteins to target ephrin B receptors. NDV based nipah Virus BNPs (NiV-ndBNP) were morphologically similar to authentic NiV virions. NiV glycoproteins were incorporated into the NDV M based particles, despite poor sequence homology in the transmembrane domain and cytoplasmic tails of glycoproteins. Our results suggest that VBNPs could be used to deliver small molecules, tumor antigens, anti-tumor/ reporter genes and also aid in generating tumor specific immunity by rational design.
    URI
    http://hdl.handle.net/10919/76938
    Collections
    • Masters Theses [19410]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us