Show simple item record

dc.contributor.authorLarson, Christopher Whitforden_US
dc.date.accessioned2017-04-04T19:50:39Z
dc.date.available2017-04-04T19:50:39Z
dc.date.issued2011-04-25en_US
dc.identifier.otheretd-04272011-110637en_US
dc.identifier.urihttp://hdl.handle.net/10919/76968
dc.description.abstractA supersonic wind tunnel, with a 20" x 20'" test section cross sectional area, was designed and constructed at the Techsburg Wind Tunnel Facility in order to determine the lift and drag on irregularly shaped fragments in supersonic flow. Prior to beginning the wind tunnel design process, a blowdown analysis model was created in order to determine the influence of a number of parameters on tunnel run time and test gas properties throughout the tunnel circuit. The design of the settling chamber, test section, supersonic nozzles, diffuser, and exhaust are presented in this thesis. Diffuser performance has a large influence on wind tunnel efficiency and run time. Therefore, significant efforts should be taken in order to attain the highest possible pressure recovery within the diffuser. The design of wind tunnel components, as well as their stress analysis, was conducted using SolidWorks. The control valve and silencer were sized and selected for the expected tunnel operating conditions. Since the control valve tends to encompass a significant portion of the overall tunnel cost, care must be taken to ensure it has a large enough flow capacity to produce the desired test conditions. Also, attempts must be made to accurately predict the total pressure loss through the silencer, since this loss can have a large impact on the total pressure ratio necessary to produce the design Mach number. Upon completion of the design process, the supersonic wind tunnel was assembled, and shakedown testing was conducted. During shakedown testing it was determined that the wind tunnel was capable of producing Mach 2 flow in the test section. Following shakedown testing, a flow survey was conducted in order to ensure uniform Mach number flow exists throughout the region occupied by the fragments. Based on the flow survey it was determined that within the middle 60% of the test section, the average Mach number was 1.950 and varied by only 0.56% within this region. Two irregularly shaped fragments were tested at Mach 2 flow, over an effective 360° pitch sweep, with wind tunnel runs performed every 10 degrees. Based on the measured force data for both fragments, the lift appeared to follow a sinusoidal curve, with minimum values at 0, 90, and 180° balance pitch angle, and maximum values occurring around 45 and 135° pitch angle. The drag force was observed to follow a gradual curve with minimum values at 0 and 180° balance pitch angle, as expected since the fragment presented area is generally least in this orientation. The maximum drag was found to occur at a balance pitch angle of 90°, once again as expected since the fragment presented area is generally greatest at this angle. It was also observed that the fragment drag tended to be greater for a fragment orientation which places the concave side of the fragment into the direction of the flow.
dc.language.isoen_USen_US
dc.publisherVirginia Techen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectIrregularly Shaped Fragmentsen_US
dc.subjectLift and Drag Forceen_US
dc.subjectSupersonic Wind Tunnelen_US
dc.titleThe Design and Construction of a 20" x 20" Mach 2.0 Blowdown Wind Tunnel to Characterize the Lift and Drag of Irregularly Shaped Fragmentsen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineMechanical Engineeringen_US
dc.contributor.committeechairNg, Wing Faien_US
dc.contributor.committeememberDiller, Thomas E.en_US
dc.type.dcmitypeTexten_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-04272011-110637/en_US
dc.contributor.committeecochairDancey, Clinton L.en_US
dc.date.sdate2011-04-27en_US
dc.date.rdate2016-10-07
dc.date.adate2011-05-17en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record