Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CO₂ Mineralization Using Reactive Species

    Thumbnail
    View/Open
    etd-05072012-224907_Ma_J_T_2012.pdf (1.567Mb)
    Downloads: 227
    Date
    2012-04-24
    Author
    Ma, Juan
    Metadata
    Show full item record
    Abstract
    To address the environmental changes associated with increasing levels of atmospheric CO?, a possibility of mineralizing CO? with the species such as Ca°? and M°? ions that are already present in sea water was studied. A series of experiments conducted at temperatures in the range of 20 to 40°C showed that the activation energy for the formation of nesquehonite (MgCO?°3H?O) is 64.6 kJ/mol. It was found that the activation energy barrier can be readily overcome by simple agitation and heating at slightly elevated temperatures, e.g., 40°C. The kinetics of mineralization and the %M°? ion utilization varies depending on energy dissipation rate, temperature, pH, and NaCl concentration. The maximum M°? ion utilization achieved was 86%. Thermodynamic calculations were carried out to construct the species distribution diagrams, predict the pH of CO? mineralization, and to predict %Mg ion utilization (or extraction) from sea water. To address the issues concerning the acidification of sea water during CO? mineralization, spent solutions were treated with basic minerals such as limestone and olivine. It was found that in the presence of these minerals the pH rises to the pH of minimum solubility of the buffering mineral. The pH of minimum solubility of limestone is 8.3 and that of olivine is 8.6. Other means of pH neutralization were also discussed.
    URI
    http://hdl.handle.net/10919/76990
    Collections
    • Masters Theses [21554]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us