Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mild and Convenient Methods to Prepare N-Alkyl Tacrines

    Thumbnail
    View/Open
    etd-05112010-032033_Mehta_JH_T_2009.pdf (2.469Mb)
    Downloads: 134
    Date
    2009-12-18
    Author
    Mehta, Jimit Haresh
    Metadata
    Show full item record
    Abstract
    Alzheimer's Disease (AD) is an irreversible, age-related neurodegenerative disorder which causes cognitive impairment and a wide variety of neuropsychiatric and behavioral disturbances. Acetylcholinesterase inhibitors (AChEI) are the mainstay for the treatment of AD. Acetylcholinesterase (AChE) catalyzes the hydrolysis of acylcholinesters with a relative specificity for acetylcholine (ACh). Observation of a deficiency of cholinergic neurotransmission in AD led to the development of AChEI as the first approved treatment for dementia symptoms. Tacrine (9-amino-1,2,3,4-tetrahydroacridine) is a reversible inhibitor of AChE. It was the first drug approved by the FDA for the treatment of cognitive symptoms of AD. Tacrine is now rarely prescribed as a drug for the treatment of AD due to its high hepatotoxicity in almost 50% of the patients. However, tacrine derivatives have considerable potential for the palliative treatment of AD. Synthesis of various bivalent tacrines led to the improvement in inhibitory potency and selectivity towards inhibition of AChE. Heptylene-linked bis-tacrine has especially shown immense promise to be an ideal AChEI. Thus dimerization of a lead compound seemed to be an ideal strategy where the compound can bind to both catalytic anionic site (CAS) and peripheral anionic site (PAS) on the AChE enzyme. However synthesis of N-alkyl derivatives of expanded tacrines like 12-chloro-2-methyl-6,7,8,9,10,11-hexahydrocycloocta[b]quinoline by the standard SNAr methods was unsuccessful and thus alternatives needed to be developed to synthesize N-alkylated and bivalent 12-chloro-2-methyl-6,7,8,9,10,11-hexahydrocycloocta[b]quinoline. Upon exploring the alternatives, N-arylation by Pd-catalysis seemed to be the most mild and convenient alternative over the standard SNAr procedures.
    URI
    http://hdl.handle.net/10919/77010
    Collections
    • Masters Theses [20805]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us