Show simple item record

dc.contributor.authorChen, Xuetaoen_US
dc.date.accessioned2017-04-06T15:42:14Z
dc.date.available2017-04-06T15:42:14Z
dc.date.issued2012-04-27en_US
dc.identifier.otheretd-04302012-173112en_US
dc.identifier.urihttp://hdl.handle.net/10919/77054
dc.description.abstractWireless distributed computing networks (WDCNs) will become the next frontier of the wireless industry as the performance of wireless platforms is being increased every year and wireless industries are looking for "killer" applications for increased channel capacity. However, WDCNs have several unique problems compared with currently well-investigated methods for wireless sensor networks and wired distributed computing. For example, it is difficult for WDCNs to be power/energy efficient considering the uncertainty and heterogeneity of the wireless environment. In addition, the service model has to take account of the interference-limited feature of wireless channels to reduce the service delay. Our research proposes a two-phase model for WDCNs including the service provision phase and the service access phase according to different traffic patterns and performance requirements. For the service provision phase, we investigate the impact of communication channel conditions on the average execution time of the computing tasks within WDCNs. We then discuses how to increase the robustness and power efficiency for WDCNs subject to the impact of channel variance and spatial heterogeneity. A resource allocation solution for computation oriented WDCNs is then introduced in detail which mitigates the effects of channel variations with a stochastic programming solution. Stochastic geometry and queue theory are combined to analyze the average performance of service response time and to design optimal access strategies during the service access phase. This access model provides a framework to analyze the service access performance and evaluate whether the channel heterogeneity should be considered. Based on this analysis, optimal strategies to access the service nodes can be determined in order to reduce the service response time. In addition, network initialization and synchronization are investigated in order to build a multiple channel WDCN in dynamic spectrum access (DSA) environments. Further, an efficient primary user detection method is proposed to reduce the channel vacation latency for WDCNs in DSA environments. Finally, this dissertation presents the complete design and implementation of a WDCN on COgnitive Radio Network (CORNET). Based on SDR technologies, software dedicated to WDCNs is designed and implemented across the PHY layer, MAC layer, and application layer. System experiments are carried out to demonstrate the performance issues and solutions presented in this dissertation. Wireless distributed computing networks (WDCNs) will become the next frontier of the wireless industry as the performance of wireless platforms is being increased every year and wireless industries are looking for "killer" applications for increased channel capacity. However, WDCNs have several unique problems compared with currently well-investigated methods for wireless sensor networks and wired distributed computing. For example, it is difficult for WDCNs to be power/energy efficient considering the uncertainty and heterogeneity of the wireless environment. In addition, the service model has to take account of the interference-limited feature of wireless channels to reduce the service delay. Our research proposes a two-phase model for WDCNs including the service provision phase and the service access phase according to different traffic patterns and performance requirements. For the service provision phase, we investigate the impact of communication channel conditions on the average execution time of the computing tasks within WDCNs. We then discuses how to increase the robustness and power efficiency for WDCNs subject to the impact of channel variance and spatial heterogeneity. A resource allocation solution for computation oriented WDCNs is then introduced in detail which mitigates the effects of channel variations with a stochastic programming solution. Stochastic geometry and queue theory are combined to analyze the average performance of service response time and to design optimal access strategies during the service access phase. This access model provides a framework to analyze the service access performance and evaluate whether the channel heterogeneity should be considered. Based on this analysis, optimal strategies to access the service nodes can be determined in order to reduce the service response time. In addition, network initialization and synchronization are investigated in order to build a multiple channel WDCN in dynamic spectrum access (DSA) environments. Further, an efficient primary user detection method is proposed to reduce the channel vacation latency for WDCNs in DSA environments. Finally, this dissertation presents the complete design and implementation of a WDCN on COgnitive Radio Network (CORNET). Based on SDR technologies, software dedicated to WDCNs is designed and implemented across the PHY layer, MAC layer, and application layer. System experiments are carried out to demonstrate the performance issues and solutions presented in this dissertation.
dc.language.isoen_USen_US
dc.publisherVirginia Techen_US
dc.rightsI hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Virginia Tech or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.en_US
dc.subjectWireless Communicationsen_US
dc.subjectPower Efficiencyen_US
dc.subjectDistributed Computingen_US
dc.titleResource Allocation for Wireless Distributed Computing Networksen_US
dc.typeDissertationen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreePh. D.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
dc.contributor.committeechairBose, Tamalen_US
dc.contributor.committeememberTranter, William H.en_US
dc.contributor.committeememberZobel, Christopher W.en_US
dc.contributor.committeememberYang, Yalingen_US
dc.type.dcmitypeTexten_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-04302012-173112/en_US
dc.contributor.committeecochairReed, Jeffrey Hughen_US
dc.date.sdate2012-04-30en_US
dc.date.rdate2016-09-27
dc.date.adate2012-05-11en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record