Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Genetic Improvement of Switchgrass Cell Wall Content, Leaf Angle and Flowering Time

    Thumbnail
    View/Open
    etd-06242011-111844_Xu_B_D_2011.pdf (2.903Mb)
    Downloads: 209
    Date
    2011-06-10
    Author
    Xu, Bin
    Metadata
    Show full item record
    Abstract
    Switchgrass (Panicum virgatum L.) is a candidate bioenergy crop. Somatic embryogenic (SE) calli are used for genetic transformation in switchgrass. A superior switchgrass line, HR8, was developed using recurrent tissue culture selection from cv. Alamo. HR8 SE calli were genetically transformable using Agrobacterium at an efficiency of ~12%. We used HR8 somatic embryogenic calli for genetic improvement of switchgrass. The lignin content of feedstock has been proposed as one key trait impacting biofuel production. 4-Coumarate: Coenzyme A ligase (4CL) is one of the key enzymes involved in the monolignol biosynthetic pathway. Two homologous 4CL genes, Pv4CL1 and Pv4CL2, were identified in switchgrass. Gene expression patterns and enzymatic activity assays suggested that Pv4CL1 is involved in monolignol biosynthesis. Stable transgenic plants were obtained with Pv4CL1 down-regulated. RNA interference of Pv4CL1 reduced extractable 4CL activity by 80%, leading to a reduction in lignin content with decreased guaiacyl unit composition. The transgenic plants had uncompromised biomass yield. After dilute acid pretreatment, the low lignin transgenic biomass had significantly increased cellulose hydrolysis (saccharification) efficiency for biofuel production. Erect leaf is a desirable trait to adjust the overall plant architecture to perceive more solar energy and thereby to increase the plant biomass production in a field population. We overexpressed an Arabidopsis NAC transcriptional factor gene, LONG VEGETATIVE PHASE ONE (AtLOV1), in switchgrass. Surprisingly, AtLOV1 induced smaller leaf angle by changing morphologies of epidermal cells in the leaf collar region, affecting lignin content and monolignol composition, and also causing delayed flowering time in switchgrass. Global gene-expression analysis of AtLOV1 transgenic plants demonstrated an array of genes has altered expressions. Potential downstream genes involved in the pleiotropic phenotypic traits of the transgenic plants are discussed.
    URI
    http://hdl.handle.net/10919/77118
    Collections
    • Doctoral Dissertations [16358]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us