Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Stochastic Model for The Transmission Dynamics of Toxoplasma Gondii

    Thumbnail
    View/Open
    etd-05112016-210816_Gao_G_T_2016.pdf (1.583Mb)
    Downloads: 117
    Date
    2016-05-05
    Author
    Gao, Guangyue
    Metadata
    Show full item record
    Abstract
    Toxoplasma gondii (T. gondii) is an intracellular protozoan parasite. The parasite can infect all warm-blooded vertebrates. Up to 30% of the world's human population carry a Toxoplasma infection. However, the transmission dynamics of T. gondii has not been well understood, although a lot of mathematical models have been built. In this thesis, we adopt a complex life cycle model developed by Turner et al. and extend their work to include diffusion of hosts. Most of researches focus on the deterministic models. However, some scientists have reported that deterministic models sometimes are inaccurate or even inapplicable to describe reaction-diffusion systems, such as gene expression. In this case stochastic models might have qualitatively different properties than its deterministic limit. Consequently, the transmission pathways of T. gondii and potential control mechanisms are investigated by both deterministic and stochastic model by us. A stochastic algorithm due to Gillespie, based on the chemical master equation, is introduced. A compartment-based model and a Smoluchowski equation model are described to simulate the diffusion of hosts. The parameter analyses are conducted based on the reproduction number. The analyses based on the deterministic model are verified by stochastic simulation near the thresholds of the parameters.
    URI
    http://hdl.handle.net/10919/78106
    Collections
    • Masters Theses [21560]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us