Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DNA Electronics

    Thumbnail
    View/Open
    etd-05212003-112020_thesis.pdf (1.299Mb)
    Downloads: 289
    etd-05212003-112020_releaseworldwide.pdf (15.72Kb)
    Downloads: 25
    Date
    2003-05-07
    Author
    Zwolak, Michael Philip
    Metadata
    Show full item record
    Abstract
    DNA is a potential component in molecular electronics. To explore this end, there has been an incredible amount of research on how well DNA conducts and by what mechanism. There has also been a tremendous amount of research to find new uses for it in nanoscale electronics. DNA's self-assembly and recognition properties have found a unique place in this area. We predict, using a tight-binding model, that spin-dependent transport can be observed in short DNA molecules sandwiched between ferromagnetic contacts. In particular, we show that a DNA spin-valve can be realized with magnetoresistance values of as much as 26% for Ni and 16% for Fe contacts. Spin-dependent transport can broaden the possible applications of DNA as a component in molecular electronics and shed new light into the transport properties of this important biological molecule.
    URI
    http://hdl.handle.net/10919/78135
    Collections
    • Masters Theses [21534]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us