Show simple item record

dc.contributor.authorLi, Liuruien_US
dc.date.accessioned2017-06-15T08:00:16Z
dc.date.available2017-06-15T08:00:16Z
dc.date.issued2017-06-14en_US
dc.identifier.othervt_gsexam:11576en_US
dc.identifier.urihttp://hdl.handle.net/10919/78199
dc.description.abstractThis thesis reports the design, fabrication, and operation of silicone based multiplexed electrospray (MES) emitters. After reviewing the feasibility of utilizing electrospray as a scalable thin film deposition technique as well as the advantages and limitations of prior MES emitters, we present a design rationale for MES suitable for highly conductive and corrosive fluids. Then we customized a 1064nm fiber laser micromachining system to precisely and rapidly machine silicone sheet and silicon wafers. Laser energy and path are judicially chosen to create clean and round micro posts that form the external structure of the nozzles. For MES with low flow rate per nozzle, it is of vital importance to evenly distribute the liquid into each nozzle on the entire MES array by controlling the pressure drop inside each fluid flow channel. To this end, we modeled the dimension of microfluidic channels that introduce flow impedance overwhelming surface tension at the nozzle tip. We presented laser microfabrication techniques for fabricating two typical types of microfluidic channels: the through-hole array on conductive silicone sheets and the in-plane microfluidic channel on silicon wafers. Next, we developed a convenient assemble process for the integration of three layers (distributor layer, extractor layer, and collector layer) of the MES emitter. The uniformity of the flow rate among nozzles on MES emitters was investigated by observing the overall spray profiles and measuring the diameter of each jet. The results suggest that the silicone-based MES emitters are feasible for spraying highly conductive and corrosive liquids. The MES emitter developed in this thesis may become a promising tool in the scalable manufacturing of thin film perovskite solar cells.en_US
dc.format.mediumETDen_US
dc.publisherVirginia Techen_US
dc.rightsThis item is protected by copyright and/or related rights. Some uses of this item may be deemed fair and permitted by law even without permission from the rights holder(s), or the rights holder(s) may have licensed the work for use under certain conditions. For other uses you need to obtain permission from the rights holder(s).en_US
dc.subjectmultiplexed-electrospray-emitteren_US
dc.titleMultiplexed Electrospray Emitters for Highly Conductive and Corrosive Fluidsen_US
dc.typeThesisen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.description.degreeMSen_US
thesis.degree.nameMSen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineMechanical Engineeringen_US
dc.contributor.committeechairDeng, Weiweien_US
dc.contributor.committeememberLiu, Yangen_US
dc.contributor.committeememberCheng, Jiangtaoen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record