Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chromosomal evolution in mosquitoes - vectors of diseases

    Thumbnail
    View/Open
    Naumenko_AN_D_2017.pdf (2.980Mb)
    Downloads: 662
    Date
    2017-06-23
    Author
    Naumenko, Anastasia Nikolayevna
    Metadata
    Show full item record
    Abstract
    The World Health Organization estimates that vector-borne diseases account for 17% of the global burden of all infectious diseases and has identified the mosquito as the most dangerous of all disease-transmitting insects, being responsible for several million deaths and hundreds of millions of cases each year. The study of mosquito genomics provides a deeper understanding of the molecular mechanisms involved in every aspect of vector biology, such as sex determination, host-parasite interaction, ecology, feeding behavior, immunity and evolutionary trends and can be used for the development of new strategies for vector control. We developed the first map of the mitotic chromosomes of the major vector for West Nile fever and lymphatic filariasis, Culex quinquefasciatus. The map was then successfully utilized for mapping of approximately 90% of available genetic markers to their precise positions on the chromosomes. Idiograms were integrated with 140 genetic supercontigs representing 26.5% of the genome. A linear regression analysis demonstrated good overall correlation between the positioning of markers on physical and genetic linkage maps. This will improve gene annotation and help in distinguishing potential haplotype scaffolds and regions of segmental duplications. It will also facilitate identification of epidemiologically important genes that can be used as targets for the vector control and provide a better framework for comparative genomics that will help understanding of the evolution of epidemiologically important traits. In another study, we confirmed the presence of the newly described species, Anopheles daciae, in regions of Russia using molecular data. Although sympatric with its sibling species, Anopheles messeae, five nucleotide substitutions in the internal transcribed spacer 2 of ribosomal DNA can be used to distinguish the morphologically similar species. Chromosome rearrangements have a significant impact on mosquito adaptation and speciation. Using sequencing data in combination with karyotyping, we demonstrated that significant differences in inversion frequencies distinguish An. messeae from An. daciae, suggesting that these inversions are actively involved in adaptation and speciation. It is essential to have reliable toolbox for correct identification of these species and to know their range for future possible malaria outbreaks prevention.
    URI
    http://hdl.handle.net/10919/78251
    Collections
    • Doctoral Dissertations [16313]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us