Show simple item record

dc.contributor.authorYu, Hengyong
dc.contributor.authorWang, Ge
dc.date.accessioned2017-09-18T09:58:51Z
dc.date.available2017-09-18T09:58:51Z
dc.date.issued2010-04-26
dc.identifier.citationHengyong Yu and Ge Wang, “SART-Type Image Reconstruction from a Limited Number of Projections with the Sparsity Constraint,” International Journal of Biomedical Imaging, vol. 2010, Article ID 934847, 9 pages, 2010. doi:10.1155/2010/934847
dc.identifier.urihttp://hdl.handle.net/10919/79043
dc.description.abstractBased on the recent mathematical findings on solving the linear inverse problems with sparsity constraints by Daubechiesx et al., here we adapt a simultaneous algebraic reconstruction technique (SART) for image reconstruction from a limited number of projections subject to a sparsity constraint in terms of an invertible compression transform. The algorithm is implemented with an exemplary Haar wavelet transform and tested with a modified Shepp-Logan phantom. Our preliminary results demonstrate that the sparsity constraint helps effectively improve the quality of reconstructed images and reduce the number of necessary projections.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherHindawien_US
dc.rightsCreative Commons Attribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleSART-Type Image Reconstruction from a Limited Number of Projections with the Sparsity Constrainten_US
dc.typeArticle - Refereed
dc.date.updated2017-09-18T09:58:51Z
dc.description.versionPeer Reviewed
dc.rights.holderCopyright © 2010 Hengyong Yu and Ge Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.identifier.doihttps://doi.org/10.1155/2010/934847
dc.type.dcmitypeText


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International