Exact Interior Reconstruction from Truncated Limited-Angle Projection Data

View/ Open
Downloads: 48
Downloads: 118
Date
2008-05-06Author
Ye, Yangbo
Yu, Hengyong
Wang, Ge
Metadata
Show full item recordAbstract
Using filtered backprojection (FBP) and an analytic continuation approach, we prove that exact interior reconstruction is possible and unique from truncated limited-angle projection data, if we assume a prior knowledge on a subregion or subvolume within an object to be reconstructed. Our results show that (i) the interior region-of-interest (ROI) problem and interior volume-of-interest (VOI) problem can be exactly reconstructed from a limited-angle scan of the ROI/VOI and a 180 degree PI-scan of the subregion or subvolume and (ii) the whole object function can be exactly reconstructed from nontruncated projections from a limited-angle scan. These results improve the classical theory of Hamaker et al. (1980).