Show simple item record

dc.contributor.authorWang, Minqian
dc.contributor.authorFirrman, Jenni
dc.contributor.authorZhang, Liqing
dc.contributor.authorArango-Argoty, Gustavo
dc.contributor.authorTomasula, Peggy
dc.contributor.authorLiu, LinShu
dc.contributor.authorXiao, Weidong
dc.contributor.authorYam, Kit
dc.date.accessioned2017-09-20T18:35:04Z
dc.date.available2017-09-20T18:35:04Z
dc.date.issued2017-08-03
dc.identifier.citationWang, M.; Firrman, J.; Zhang, L.; Arango-Argoty, G.; Tomasula, P.; Liu, L.; Xiao, W.; Yam, K. Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus. Molecules 2017, 22, 1292.
dc.identifier.urihttp://hdl.handle.net/10919/79350
dc.description.abstractApigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus, Bifidobacterium catenulatum, Lactobacillus rhamnosus GG, and Enterococcus caccae, was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae.
dc.format.mimetypeapplication/pdf
dc.languageen_USen_US
dc.publisherMDPI
dc.rightsCreative Commons Attribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.titleApigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcusen_US
dc.typeArticle - Refereeden_US
dc.date.updated2017-09-20T18:35:04Z
dc.title.serialMolecules
dc.identifier.doihttps://doi.org/10.3390/molecules22081292
dc.type.dcmitypeText


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International