Show simple item record

dc.contributor.authorAdelman, Zach N.
dc.contributor.authoret al.
dc.date.accessioned2017-11-13T19:43:18Z
dc.date.available2017-11-13T19:43:18Z
dc.date.issued2016-02-02
dc.identifier.urihttp://hdl.handle.net/10919/80353
dc.description.abstractThe bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite
dc.description.sponsorshipFunding for genome sequencing, assembly and automated annotation was provided by NHGRI grant U54 HG003273 to R.A.G. Funding for bed bug lines development was provided by Blanton J. Whitmire endowment, Housing and Urban Development (NCHHU-00017-13), National Science Foundation (IOS-1052238), Alfred P. Sloan Foundation (2013-5-35 MBE) to Cob. S. Funding for preparation of genomic DNA and RNA for sequencing and for manual curation of some of the genes was provided by NIH (GM070559-9) to S.R.P. Funding for manual curation and other analyses were provided by the Royal Society of New Zealand Marsden Fast Start Grant (11-UOO-124) to E.J.D., Fralin Life Sciences Institutes and Virginia Agriculture Experimental Station to Z.N.A., European Research Council (ERC-CoG 616346) to A.K., Deutsche Forschungsgemeinschaft (DFG): Pe1798/2-1 to N.P., Deutsche Forschungsgemeinschaft (DFG): PA2044/1-1 to K.A.P., Deutsche Forschungsgemeinschaft (DFG): collaborative research center SFB 1047 ‘Insect timing,’ Project A1 to P.M., The Zukunftskonzept at TU Dresden funded by the Exzellenzinitiative of the Deutsche Forschungsgemeinschaft to K.R., Deutsche Forschungsgemeinschaft (DFG): BL469/7-1 to Wo.B., Deutsche Forschungsgemeinschaft (DFG): 766/11-1 to R.P., European Research Council grant 260986 to P.J., Biotechnology and Biological Sciences Research Council to J.-J.Z., University of Cincinnati Faculty Development Research Grant and Ohio Supercomputer Center Research Allocation to J.B.B., Marie Curie International Outgoing Fellowship PIOF-GA- 2011–303312 to R.M.W., National Science Foundation (DEB-1257053) to J.H.W., and Swiss National Science Foundation awards 31003A-125350 and 31003A-143936 to E.M.Z..
dc.language.isoen_US
dc.publisherNature
dc.titleUnique features of a global human ectoparasite identified through sequencing of the bed bug genome
dc.typeArticle
dc.title.serialNature Communications
dc.identifier.doihttps://doi.org/10.1038/ncomms10165
dc.identifier.volume7


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record