Show simple item record

dc.contributor.authorHao, Hsin-Seng Freden
dc.date.accessioned2017-12-06T15:20:50Zen
dc.date.available2017-12-06T15:20:50Zen
dc.date.issued1982en
dc.identifier.urihttp://hdl.handle.net/10919/81015en
dc.description.abstractIn this thesis we attempt to generalize some of Kummer's work on Fermat's Last Theorem over the rational numbers to quadratic fields. In particular, under certain congruence conditions it is shown that the Fermat equation of exponent p has no solution over Q(√m) when p is a m-regular prime. Completely analogous to the work of Kummer, it is shown that m-regular primes can be described in terms of the generalized Bernoulli numbers. When p = 3,5 and 7, an explicit, easily computable criterion is given for m-regularity.en
dc.format.extentiv, 56, [1] leavesen
dc.format.mimetypeapplication/pdfen
dc.language.isoen_USen
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 9204810en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1982.H362en
dc.subject.lcshFermat's theoremen
dc.titleThe Fermat equation over quadratic fieldsen
dc.typeDissertationen
dc.contributor.departmentMathematicsen
dc.description.degreePh. D.en
thesis.degree.namePh. D.en
thesis.degree.leveldoctoralen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.disciplineMathematicsen
dc.type.dcmitypeTexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record