Show simple item record

dc.contributor.authorFreire Burgos, Edwin R.en_US
dc.date.accessioned2017-12-21T16:33:19Z
dc.date.available2017-12-21T16:33:19Z
dc.date.issued2017-09-08en_US
dc.identifier.urihttp://hdl.handle.net/10919/81313
dc.description.abstractThe Portfolio Analysis Management Office (PAMO) for the Aeronautics Research Mission Directorate (ARMD) at NASA Headquarters tasked the Systems Analysis and Concepts Directorate at NASA Langley to combine efforts with Virginia Tech to develop a global demand model with the capability to predict future demand in the air transportation field. A previous study (Alsalous, 2015) started the development of the Global Demand Mode (GDM) to predict air travel demand based on Gross Domestic Product (GDP) and population trends for 3,974 airports worldwide. The study was done from year 2016 to year 2040. This research project intends to enhance the GDM capabilities. A Fratar model is implemented for the distribution of the forecast demand during each year. The Fratar model uses a 3,974 by 3,974 origin-destination matrix to distribute the demand among 55,612 unique routes in the network. Moreover, the GDM is capable to estimate the aircraft fleet mix per route and the number of flights per aircraft that are needed to satisfy the forecast demand. The model adopts the aircraft fleet mix from the Official Airline Guide data for the year 2015. Once the aircraft types are distributed and flights are assigned, the GDM runs an aircraft retirement and replacement analysis to remove older generation aircraft from the network and replace them with existing or newer aircraft. The GDM continues to evolve worldwide aircraft fleet by introducing 14 new generation aircraft from Airbus, Boeing, Bombardier, and Embraer and 5 Advanced Technology Aircraft from NASA.en_US
dc.format.mediumETDen_US
dc.language.isoen_USen_US
dc.publisherVirginia Techen_US
dc.subjectAir Travel Demanden_US
dc.subjectFratar Modelen_US
dc.subjectTrip Distributionen_US
dc.subjectWorldwide Aircraft Fleeten_US
dc.subjectAircraft Fleet Evolutionen_US
dc.subjectNew Generation Aircraften_US
dc.subjectNASA’s Advanced Technology Aircraften_US
dc.titleAviation Global Demand Forecast Model Development: Air Transportation Demand Distribution and Aircraft Fleet Evolutionen_US
dc.typeThesisen_US
dc.contributor.departmentCivil and Environmental Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineCivil Engineeringen_US
dc.contributor.committeechairTrani, Antonio A.en_US
dc.contributor.committeememberAbbas, Montasir M.en_US
dc.contributor.committeecochairWang, Linbingen_US
dc.description.abstractgeneralThe Portfolio Analysis Management Office (PAMO) for the Aeronautics Research Mission Directorate (ARMD) at NASA Headquarters tasked the Systems Analysis and Concepts Directorate at NASA Langley to combine efforts with Virginia Tech to develop a global demand model with the capability to predict future demand in the air transportation field. A previous study (Alsalous, 2015) started the development of the Global Demand Mode (GDM) to predict air travel demand based on Gross Domestic Product (GDP) and population trends for 3,974 airports worldwide. The study was done from year 2016 to year 2040. The previous study done by Alsaous, predicts how many seats will be departing out of the 3,974 airports worldwide. This project intends to use the outputs of the GDM and distribute the seats predicted among the airports. The objective is to predict how many seats will be offered that will be departing from airport “A” and arriving at airport “B”. For this, a Fratar model was implemented. The second objective of this project is to estimate what will the aircraft fleet be in the future and how many flights will be needed to satisfy the predicted air travel demand. If the number of seats going from airport A to airport B is known, then, by analyzing real data it can be estimated what type of aircraft will be flying from airport “A” to airport “B” v and how many flights each aircraft will have to perform in order to satisfy the forecasted demand. Besides of estimating the type of aircraft that will be used in the future, the modeled created is capable of introducing new aircraft that are not part of the network yet. Fourteen new generation aircraft from Airbus, Boeing, Bombardier, and Embraer and 5 Advanced Technology Aircraft from NASA.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record