Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Population dynamics of stochastic lattice Lotka-Volterra models

    Thumbnail
    View/Open
    Chen_S_D_2018.pdf (2.368Mb)
    Downloads: 1188
    Supporting documents (59.73Kb)
    Downloads: 78
    Supporting documents (185.5Kb)
    Downloads: 170
    Supporting documents (44.06Kb)
    Downloads: 60
    Date
    2018-02-06
    Author
    Chen, Sheng
    Metadata
    Show full item record
    Abstract
    In a stochastic Lotka-Volterra model on a two-dimensional square lattice with periodic boundary conditions and subject to occupation restrictions, there exists an extinction threshold for the predator population that separates a stable active two-species coexistence phase from an inactive state wherein only prey survive. When investigating the non-equilibrium relaxation of the predator density in the vicinity of the phase transition point, we observe critical slowing-down and algebraic decay of the predator density at the extinction critical point. The numerically determined critical exponents are in accord with the established values of the directed percolation universality class. Following a sudden predation rate change to its critical value, one finds critical aging for the predator density autocorrelation function that is also governed by universal scaling exponents. This aging scaling signature of the active-to-absorbing state phase transition emerges at significantly earlier times than the stationary critical power laws, and could thus serve as an advanced indicator of the (predator) population's proximity to its extinction threshold. In order to study boundary effects, we split the system into two patches: Upon setting the predation rates at two distinct values, one half of the system resides in an absorbing state where only the prey survives, while the other half attains a stable coexistence state wherein both species remain active. At the domain boundary, we observe a marked enhancement of the predator population density, the minimum value of the correlation length, and the maximum attenuation rate. Boundary effects become less prominent as the system is successively divided into subdomains in a checkerboard pattern, with two different reaction rates assigned to neighboring patches. We furthermore add another predator species into the system with the purpose of studying possible origins of biodiversity. Predators are characterized with individual predation efficiencies and death rates, to which "Darwinian" evolutionary adaptation is introduced. We find that direct competition between predator species and character displacement together play an important role in yielding stable communities. We develop another variant of the lattice predator-prey model to help understand the killer- prey relationship of two different types of E. coli in a biological experiment, wherein the prey colonies disperse all over the plate while the killer cell population resides at the center, and a "kill zone" of prey forms immediately surrounding the killer, beyond which the prey population gradually increases outward.
    URI
    http://hdl.handle.net/10919/82038
    Collections
    • Doctoral Dissertations [16363]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us