Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cellulose Esters and Cellulose Ether Esters for Oral  Drug Delivery Systems

    Thumbnail
    View/Open
    Arca_HC_D_2016.pdf (27.18Mb)
    Downloads: 1515
    Date
    2016-11-01
    Author
    Arca, Hale Cigdem
    Metadata
    Show full item record
    Abstract
    Amorphous solid dispersion (ASD) is a popular method to increase drug solubility and consequently poor drug bioavailability. Cellulose ω-carboxyesters were designed and synthesized specifically for ASD preparations in Edgar lab that can meet the ASD expectations such as high Tg, recrystallization prevention and pH-triggered release due to the free -COOH groups. Rifampicin (Rif), Ritonavir (Rit), Efavirenz (Efa), Etravirine (Etra) and Quercetin (Que) cellulose ester ASDs were investigated in order to increase drug solubility, prevent release at low pH and controlled release of the drug at small intestine pH that can improve drug bioavailability, decrease needed drug content and medication price to make it affordable in third world countries, and extent pill efficiency period to improve patient quality of life and adherence to the treatment schedule. The studies were compared with cellulose based commercial polymers to prove the impact of the investigation and potential for the application. Furthermore, the in vitro results obtained were further supported by in vivo studies to prove the significant increase in bioavailability and show the extended release. The need of new cellulose derivatives for ASD applications extended the research area, the design and synthesis of a new class of polymers, alkyl cellulose ω-carboxyesters for ASD formulations investigated and the efficiency of the polymers were summarized to show that they have the anticipated properties. The polymers were synthesized by the reaction of commercial cellulose alkyl ethers with benzyl ester protected, monofunctional hydrocarbon chain acid chlorides, followed by removal of protecting group using palladium hydroxide catalyzed hydrogenolysis to form the alkyl cellulose wcarboxyalkanoate. Having been tested for ASD preparation, it was proven that the polymers were efficient in maintaining the drug in amorphous solid state, release the drug at neutral pH and prevent the recrystallization for hours, as predicted.
    URI
    http://hdl.handle.net/10919/82920
    Collections
    • Doctoral Dissertations [14916]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us