Advances in Subduction Zone Processes

TR Number
Date
2018-06-29
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Subduction zones are an important recycling center at which material from the exterior of the Earth is transported to Earth's interior. The processes that occur along subduction zones have important implications for elemental cycles, geodynamics, and material mass transport. The cold, dense subducting lithosphere experiences prograde metamorphism as it transitions from blueschist to eclogite facies resulting in the breakdown of volatile-bearing minerals and producing anhydrous minerals and a free fluid phase. Previous works attempting to understand the evolution of subducted lithologies have provided a firm foundation in which to apply field work, computational thermodynamic modeling, and geochronological techniques in order to better constraint the Pressure-Temperature-time (P-T-t) paths and dehydration of subducted lithologies.

This dissertation; 1.) Explores novel approaches to modeling and predicting fluid/rock interactions during deep (>60km) subduction, and 2.) Questions what the calculated P-T-t path from eclogite lithologies reveals about early exhumation of subducted terrains. The second chapter focuses on how externally-derived hydrous fluids can decarbonate subducted basalt, liberate carbon and transfer it to the overlying mantle wedge, where it can be incorporated into melt that forms volcanic arcs. Here, the thermodynamic response to the infiltration of external fluids assuming open system, pervasive fluid flow, is quantified. It was determined that while hotter subduction zones have more favorable P-T conditions in which to facilitate decarbonation than colder subduction, the extent of decarbonation is largely dependent on the availability of fluid from the dehydration of underlying serpentine. The third chapter constrains the P-T-t paths of subducted lithologies from Syros, Greece using a combination of thermodynamic modeling, 147Sm/144Nd garnet geochronology, and quartz-in-garnet geobarometry. This provides insight into early exhumation of subducted lithologies, and allows for the exploration of assumptions made in thermodynamic modeling and in quartz-in-garnet geobarometry. Results suggest that garnet grew over a 4.31my period from 45.71±0.98Ma to 41.4±1.7Ma, during initial exhumation from maximum subducted depths. Calculated exhumation rates are a relatively rapid, 0.4-1.7 cm/yr. Because field relationships on Syros suggest the width of the subduction channel along the slab/mantle interface is not adequate to facilitate buoyancy-driven ascension of metabasic blocks, initiation of southward retreat of the Hellenic Subduction Zone and subsequent slab rollback is proposed to have played an important role in the exhumation of subducted lithologies. The final chapter investigates the compositional controls on the P-T conditions at which dehydration due to the breakdown of hydrous minerals occur during subduction (blueschist/eclogite boundary), and the implications they have on the rheology, seismicity, and densification of the down going slab. Total Alkali Silica (TAS) diagrams reveal that eclogites are more alkali rich, implying that initial alteration of the seafloor controls the mineral evolution of subducted basalt in many cases.

Description
Keywords
metamorphism, subduction, thermodynamics, geochronology, fluids, blueschist, eclogite
Citation