Show simple item record

dc.contributor.authorMbungu, Winfred Baptisten_US
dc.date.accessioned2018-07-05T06:00:11Z
dc.date.available2018-07-05T06:00:11Z
dc.date.issued2017-01-10
dc.identifier.othervt_gsexam:8627en_US
dc.identifier.urihttp://hdl.handle.net/10919/83863
dc.description.abstractLand alterations including deforestation, unsustainable land management practices and an increase in cultivated areas have occurred in the Upper Ruvu watershed in recent decades threatening water and natural resources. This study, which used a combination of remote sensing techniques, field experiments, watershed monitoring, and modeling was designed to investigate impacts of environmental changes on hydrology and soil erosion. The objectives were to: map the extent of land use and land cover change and its influence on soil erosion; correlate the contribution of climate variability and human activities to the changes in hydrology at headwater and watershed scales; estimate surface runoff, sediments and Curve Number at plot scale, and model streamflow responses to changes in land use and land cover using the SWAT watershed model. Results indicate that areas covered by forest decreased from 17% in 1991 to 4% of the total watershed area in 2015. However, areas covered by cropland increased from 14% to 30% of the total watershed area from 1991 to 2015, respectively. Further, results indicate that site characteristics affect runoff and sediment yield as higher soil loss was estimated from cropland with a mean of 28.4 tha-1 in 2015 from 19.8 tha-1 in 1991. Results from monitoring show high sediment loads were from the most disturbed watersheds, compared to Mbezi. Analysis of trends for the long term records at the watershed showed that rainfall had significant decreasing trends. At annual scale, climate variability contributed 46% and human activities contributed 54% of the changes in streamflow. Results from the rainfall simulation experiments show upland rice had higher runoff (48 mmh-1) and soil loss (94 gm-2) compared to grassland and forest. Results from the model outputs showed that average streamflow decreased by 13% between 1991 and 2015. Average peak flows increased by 5% and 12% for 2000 and 2015, respectively compared to the baseline. Land alterations had impacts on surface runoff which increased by 75% and baseflow decreased by 66% in 2015 from the baseline. These results highlight the main areas of changes and provide quantitative information to decision makers for sustainable land and water resources planning and management.en_US
dc.format.mediumETDen_US
dc.publisherVirginia Techen_US
dc.rightsThis item is protected by copyright and/or related rights. Some uses of this item may be deemed fair and permitted by law even without permission from the rights holder(s), or the rights holder(s) may have licensed the work for use under certain conditions. For other uses you need to obtain permission from the rights holder(s).en_US
dc.subjectLand use and land cover changeen_US
dc.subjectclimate variabilityen_US
dc.subjectsoil erosionen_US
dc.subjecthydrologyen_US
dc.subjectSWATen_US
dc.titleImpacts of Land Use and Land Cover Changes, and Climate Variability on Hydrology and Soil Erosion in the Upper Ruvu Watershed, Tanzaniaen_US
dc.typeDissertationen_US
dc.contributor.departmentBiological Systems Engineeringen_US
dc.description.degreePh. D.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineBiological Systems Engineeringen_US
dc.contributor.committeechairHeatwole, Conrad D.en_US
dc.contributor.committeememberSridhar, Venkataramanaen_US
dc.contributor.committeememberGalbraith, John M.en_US
dc.contributor.committeememberEaston, Zacharyen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record