Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Guiding RTL Test Generation Using Relevant Potential Invariants

    Thumbnail
    View/Open
    Khanna_T_T_2018.pdf (556.3Kb)
    Downloads: 363
    Date
    2018-08-02
    Author
    Khanna, Tania
    Metadata
    Show full item record
    Abstract
    In this thesis, we propose to use relevant potential invariants in a simulation-based swarmintelligence-based test generation technique to generate relevant test vectors for design validation at the Register Transfer Level (RTL). Providing useful guidance to the test generator for such techniques is critical. In our approach, we provide guidance by exploiting potential invariants in the design. These potential invariants are obtained using random stimuli such that they are true under these stimuli. Since these potential invariants are only likely to be true, we try to generate stimuli that can falsify them. Any such vectors would help reach some corners of the design. However, the space of potential invariants can be extremely large. To reduce execution time, we also implement a two-layer filter to remove the irrelevant potential invariants that may not contribute in reaching difficult states. With the filter, the vectors generated thus help to reduce the overall test length while still reach the same coverage as considering all unfiltered potential invariants. Experimental results show that with only the filtered potential invariants, we were able to reach equal or better branch coverage than that reported by BEACON in the ITC99 benchmarks, with considerable reduction in vector lengths, at reduced execution time.
    URI
    http://hdl.handle.net/10919/84483
    Collections
    • Masters Theses [19684]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us