Show simple item record

dc.contributor.authorYang, Yanshenen
dc.date.accessioned2018-09-12T06:00:28Zen
dc.date.available2018-09-12T06:00:28Zen
dc.date.issued2018-07-02en
dc.identifier.othervt_gsexam:15877en
dc.identifier.urihttp://hdl.handle.net/10919/84999en
dc.description.abstractDe novo motif discovery in biological sequences is an important and computationally challenging problem. A myriad of algorithms have been developed to solve this problem with varying success, but it can be difficult for even a small number of these tools to reach a consensus. Because individual tools can be better suited for specific scenarios, an ensemble tool that combines the results of many algorithms can yield a more confident and complete result. We present a novel and fast tool MCAT (Motif Combining and Association Tool) for de novo motif discovery by combining six state-of-the-art motif discovery tools (MEME, BioProspector, DECOD, XXmotif, Weeder, and CMF). We apply MCAT to data sets with DNA sequences that come from various species and compare our results with two well-established ensemble motif finding tools, EMD and DynaMIT. The experimental results show that MCAT is able to identify exact match motifs in DNA sequences efficiently, and it has a better performance in practice.en
dc.format.mediumETDen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectMotif findingen
dc.titleMCAT: Motif Combining and Association Toolen
dc.typeThesisen
dc.contributor.departmentComputer Scienceen
dc.description.degreeMaster of Scienceen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelmastersen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.disciplineComputer Science and Applicationsen
dc.contributor.committeechairHeath, Lenwood S.en
dc.contributor.committeememberZhang, Liqingen
dc.contributor.committeememberHauf, Silkeen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record