Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Current-Transformer Based Gate-Drive Power Supply With Reinforced Isolation

    Thumbnail
    View/Open
    Hu_J_T_2018.pdf (3.687Mb)
    Downloads: 4245
    Date
    2018-05
    Author
    Hu, Jiewen
    Metadata
    Show full item record
    Abstract
    In recent years, there is a clear trend toward increasing the demand for electric power in high-power applications. High-power converters are making major impacts on these high-power applications. Recent breakthroughs in Silicon Carbide (SiC) materials and fabrication techniques have led to the development of high-voltage, high-frequency power devices, which are at the heart of high-power converters. SiC metal-oxide semiconductor field-effect transistors (MOSFETs) have advantages over silicon (Si) devices due to their higher breakdown voltage, higher thermal capability, and lower on-state resistance. However, their fast switching frequency and high blocking voltage bring challenges to the gate-drive circuit design. The gate driver of SiC-MOSFETs requires a power supply that provides a high-voltage, high-density design, a low input-output capacitance (CI/O) transformer design, good voltage regulation, as well as good resilience to faults to enable safe and fast operation. In this thesis, a power supply that supplies multiple gate drivers for 10 kV SiC MOSFETs is presented. A transformer design approach with a single turn at the primary side is proposed. A 20 kV insulation is achieved by the primary HV cable insulation across a toroid transformer core. The CI/O is designed less than 2 pF to mitigate the Common-Mode (CM) noise. A circuit topology analysis is performed and the inductor/capacitor/capacitor/inductor (LCCL) – inductor/capacitor (LC) circuit is selected. This circuit allows Zero-Voltage Switching (ZVS) at full operation range. A Resonant-Current-Bus (RCB) is built at the transformer primary side to achieve load-independence.
    General Audience Abstract
    Wide-bandgap semiconductor devices have attracted widespread attention due to their superior performance compared to their silicon devices counterpart. To utilize its full benefits, this thesis presents a complete design and optimization of a gate-drive power supply that supplies multiple gate drivers for high-voltage, high-speed semiconductor devices. Four objectives, including high density at high voltage, good noise mitigation, fair voltage regulation, resilience to faults have been achieved. During the design procedure, different topology candidates are introduced and compared, after which a resonant topology is selected. The wide-bandgap semiconductor devices are utilized to reduce the size and losses. Hardware assembly is shown and experimental testing results are provided in the end to verify the design.
    URI
    http://hdl.handle.net/10919/85050
    Collections
    • Masters Theses [20800]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us