Show simple item record

dc.contributor.authorWang, Shuoen
dc.contributor.authorCao, Yangen
dc.date.accessioned2018-09-24T14:37:09Zen
dc.date.available2018-09-24T14:37:09Zen
dc.date.issued2015-08-11en
dc.identifier.othere0133295en
dc.identifier.urihttp://hdl.handle.net/10919/85118en
dc.description.abstractRandom effect in cellular systems is an important topic in systems biology and often simulated with Gillespie’s stochastic simulation algorithm (SSA). Abridgment refers to model reduction that approximates a group of reactions by a smaller group with fewer species and reactions. This paper presents a theoretical analysis, based on comparison of the first exit time, for the abridgment on a linear chain reaction model motivated by systems with multiple phosphorylation sites. The analysis shows that if the relaxation time of the fast subsystem is much smaller than the mean firing time of the slow reactions, the abridgment can be applied with little error. This analysis is further verified with numerical experiments for models of bistable switch and oscillations in which linear chain system plays a critical role.en
dc.format.mimetypeapplication/pdfen
dc.language.isoen_USen
dc.publisherPLOSen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleThe Abridgment and Relaxation Time for a Linear Multi-Scale Model Based on Multiple Site Phosphorylationen
dc.typeArticle - Refereeden
dc.description.versionPeer Revieweden
dc.contributor.departmentComputer Scienceen
dc.title.serialPLOS ONEen
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0133295en
dc.identifier.volume10en
dc.identifier.issue8en
dc.type.dcmitypeTexten
dc.identifier.pmid26263559en
dc.identifier.eissn1932-6203en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International