Show simple item record

dc.contributor.authorHu, Xiaohuaen_US
dc.contributor.authorKuhn, Jeffrey R.en_US
dc.date.accessioned2018-10-31T12:46:11Z
dc.date.available2018-10-31T12:46:11Z
dc.date.issued2012-02-16en_US
dc.identifier.othere31385en_US
dc.identifier.urihttp://hdl.handle.net/10919/85591
dc.description.abstractWe reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg2+ generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg2+ abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg2+, Lys-Lys2+, or fascin restored both comet tail attachment and sustained particle motility in low Mg2+ buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_USen_US
dc.publisherPLOSen_US
dc.rightsCreative Commons Attribution 4.0 Internationalen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.titleActin Filament Attachments for Sustained Motility In Vitro Are Maintained by Filament Bundlingen_US
dc.typeArticle - Refereeden_US
dc.description.versionPeer Revieweden_US
dc.title.serialPLOS ONEen_US
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0031385en_US
dc.identifier.volume7en_US
dc.identifier.issue2en_US
dc.type.dcmitypeTexten_US
dc.identifier.pmid22359589en_US
dc.identifier.eissn1932-6203en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International