Show simple item record

dc.contributor.authorCao, Fangyu
dc.contributor.authorLiu, Ying
dc.contributor.authorXu, Jiajun
dc.contributor.authorHe, Yadong
dc.contributor.authorHammouda, B.
dc.contributor.authorQiao, Rui
dc.contributor.authorYang, Bao
dc.date.accessioned2019-01-24T18:24:47Z
dc.date.available2019-01-24T18:24:47Z
dc.date.issued2015-11-04
dc.identifier.issn2045-2322
dc.identifier.other16040
dc.identifier.urihttp://hdl.handle.net/10919/86878
dc.description.abstractSurfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scattering, thermal conductivity measurements, and molecular dynamics simulations. We report the first experimental observation of a minimum thermal conductivity occurring at the critical micelle concentration (CMC): the thermal conductivity of the surfactant solution decreases as AOT is added till the onset of micellization but increases as more AOT is added. The decrease of thermal conductivity with AOT loading in solutions in which AOT molecules are dispersed as monomers suggests that even the interfaces between individual oleophobic headgroup of AOT molecules and their surrounding non-polar octane molecules can hinder heat transfer. The increase of thermal conductivity with AOT loading after the onset of micellization indicates that the thermal transport in the core of AOT micelles and across the surfactant-oil interfaces, both of which span only a few nanometers, are efficient.en_US
dc.description.sponsorshipNational Science Foundation (NSF) [1336778, 1463932, DMR-0944772]
dc.format.extent9
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherSpringer Nature
dc.rightsCreative Commons Attribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectreverse micelles
dc.subjectmolecular-dynamics
dc.subjectaqueous-solution
dc.subjectaggregation
dc.subjectconductivity
dc.subjectresistance
dc.subjectsans
dc.subjectsimulations
dc.subjectinterfaces
dc.titleProbing Nanoscale Thermal Transport in Surfactant Solutionsen_US
dc.typeArticle - Refereed
dc.description.notesB.Y., F.C., and J.X. acknowledges the financial support from National Science Foundation (NSF) under Grant 1336778. Y.L., Y.H. and R.Q. acknowledges the financial support from National Science Foundation (NSF) under Grant 1463932. B.H. acknowledges the financial support from National Science Foundation (NSF) under Agreement No. DMR-0944772. The identification of commercial products does not imply endorsement by the National Institute of Standards and Technology nor does it imply that these are the best for the purpose.
dc.title.serialScientific Reports
dc.identifier.doihttps://doi.org/10.1038/srep16040
dc.identifier.volume5
dc.type.dcmitypeText
dc.identifier.pmid26534840


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
License: Creative Commons Attribution 4.0 International