Show simple item record

dc.contributor.authorTiegs, Scott D.
dc.contributor.authorEntrekin, Sally
dc.contributor.authoret al
dc.date.accessioned2019-01-25T16:04:03Z
dc.date.available2019-01-25T16:04:03Z
dc.date.issued2019-01-09
dc.identifier.urihttp://hdl.handle.net/10919/86897
dc.description.abstractRiver ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.en_US
dc.format.extent9 pages
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherAmerican Association for the Advancement of Science
dc.rightsCreative Commons Attribution-NonCommercial 4.0
dc.rights.urihttp://www.creativecommons.org/licenses/by-nc/4.0/
dc.titleGlobal patterns and drivers of ecosystem functioning in rivers and riparian zonesen_US
dc.typeArticle - Refereed
dc.title.serialScience Advances
dc.identifier.volume5
dc.type.dcmitypeText


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial 4.0
License: Creative Commons Attribution-NonCommercial 4.0