Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bidirectional Reflectance Measurements of Low-Reflectivity Optical Coating Z302

    Thumbnail
    View/Open
    Shirsekar_D_T_2019.pdf (4.335Mb)
    Downloads: 1106
    Date
    2019-02-05
    Author
    Shirsekar, Deepali
    Metadata
    Show full item record
    Abstract
    Black coatings essentially absorb incident light at all wavelengths from all directions. They are used when minimal reflection or maximum absorption is desired and therefore are effective in applications that require control of stray light. Our motivation stems from the use of black coating Lord Aeroglaze® Z302 in aerospace and remote sensing applications and the desire to support the development of bidirectional spectral models that can be used successfully to predict the performance of optical instruments such as telescopes. The bidirectional reflectance distribution function (BRDF) is an indispensable parameter in the optical characterization of such coatings. The current effort involves investigation of the BRDF of the commercial black coating Aeroglaze® Z302. An automated goniometer reflectometer has been designed, fabricated and successfully used for performing the BRDF measurements of Z302 at visible and ultraviolet wavelengths and at both polarizations. The current contribution involves study of Z302 samples prepared at different thicknesses and by different methods, which provides insight about influence of surface roughness on BRDF of Z302.
    General Audience Abstract
    When light falls on different materials it undergoes various phenomenon such as reflection, refraction, absorption and scattering. The amount of each phenomenon varies with the optical nature of a material as well as the wavelength and direction of the light. Therefore, understanding the optical properties of materials at various wavelengths of light is necessary for effectively using those materialsin specific applications which require light to be efficiently reflected or absorbed. This research studies an optical property known as Bidirectional Reflectance Distribution Function (BRDF) of a black coating called Lord Aeroglaze Z302. Black coatings are materials that ideally absorb almost all light that falls on them irrespective of the light’s direction and wavelength. They are used in applications where maximum absorption of light is required. One such application which relates to the motivation for this research is absorbing unwanted light in instruments used in space such as telescopes and radiometers. Z302 is used in the Clouds and the Earth’s Radiant Energy System (CERES) instruments developed by NASA. BRDF is an important parameter which gives information about all other optical properties of a surface and can be used to know optical performance of that surface. The current work describes the experiments and an automated device developed, called reflectometer, to measure the BRDF of Z302 at different angles and wavelengths of light. The results are reported for different thickness samples of Z302 coating, and two different wavelengths of light that belong to the visible and ultraviolet spectrum of light.
    URI
    http://hdl.handle.net/10919/87467
    Collections
    • Masters Theses [21540]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us