Show simple item record

dc.contributor.authorStinson, Nicholas Tayloren_US
dc.date.accessioned2019-06-18T08:01:00Z
dc.date.available2019-06-18T08:01:00Z
dc.date.issued2019-06-17
dc.identifier.othervt_gsexam:21207en_US
dc.identifier.urihttp://hdl.handle.net/10919/90222
dc.description.abstractThis thesis describes an adaptable component level machinery system weight and size estimation tool used in the context of a ship distributed system architecture framework and ship synthesis model for naval ship concept design. The system architecture framework decomposes the system of systems into three intersecting architectures: physical, logical, and operational to describe the spatial and functional relationships of the system together with their temporal behavior characteristics. Following an Architecture Flow Optimization (AFO), or energy flow analysis based on this framework, vital components are sized based on their energy flow requirements for application in the ship synthesis model (SSM). Previously, components were sized manually or parametrically. This was not workable for assessing many designs in concept exploration and outdated parametric models based on historical data were not sufficiently applicable to new ship designs. The new methodology presented in this thesis uses the energy flow analysis, baseline component data, and physical limitations to individually calculate sizes and weights for each vital component in a ship power and energy system. The methodology allows for new technologies to be quickly and accurately implemented to assess their overall impact on the design. The optimized flow analysis combined with the component level data creates a higher fidelity design that can be analyzed to assess the impact of various systems and operational cases on the overall design. This thesis describes the SSM, discusses the AFO's contribution, and provides background on the component sizing methodology including the underlying theory, baseline data, energy conversion, and physical assumptions.en_US
dc.format.mediumETDen_US
dc.publisherVirginia Techen_US
dc.rightsThis item is protected by copyright and/or related rights. Some uses of this item may be deemed fair and permitted by law even without permission from the rights holder(s), or the rights holder(s) may have licensed the work for use under certain conditions. For other uses you need to obtain permission from the rights holder(s).en_US
dc.subjectship designen_US
dc.subjectnaval shipen_US
dc.subjectdistributed systemen_US
dc.subjectsystem architectureen_US
dc.subjectset-based designen_US
dc.titleRefinement of Surface Combatant Ship Synthesis Model for Network-Based System Designen_US
dc.typeThesisen_US
dc.contributor.departmentAerospace and Ocean Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineOcean Engineeringen_US
dc.contributor.committeechairBrown, Alan J.en_US
dc.contributor.committeememberChoi, Seongim Sarahen_US
dc.contributor.committeememberBrizzolara, Stefanoen_US
dc.description.abstractgeneralThis thesis describes an adaptable component level machinery system weight and size estimation tool used in the context of a preliminary ship system design and naval ship concept design. The system design decomposes the system of systems into three intersecting areas: physical, logical, and operational to describe the spatial and functional relationships of the system together with their time dependent behavior characteristics. Following an Architecture Flow Optimization (AFO), or energy flow analysis based on this system design, vital components are sized based on their energy flow requirements for application in the ship synthesis model (SSM). Previously, components were sized manually or with estimated equations. This was not workable for assessing many designs in concept exploration and outdated equation models based on historical data were not sufficiently applicable to new ship designs. The new methodology presented in this thesis uses the energy flow analysis, baseline component data, and physical limitations to individually calculate sizes and weights for each vital component in a ship power and energy system. The methodology allows for new technologies to be quickly and accurately implemented to assess their overall impact on the design. The optimized flow analysis combined with the component level data creates a more accurate design that can be analyzed to assess the impact of various systems and operational cases on the overall design. This thesis describes the SSM, discusses the AFO’s contribution, and provides background on the component sizing methodology including the underlying theory, baseline data, energy conversion, and physical assumptions.en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record