Online Unmanned Ground Vehicle Mission Planning using Active Aerial Vehicle Exploration

TR Number
Date
2019-06-28
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

This work presents a framework for the exploration and path planning for a collaborative UAV and UGV system. The system is composed of a UAV with a stereo system for obstacle detection and a UGV with no sensors for obstacle detection. Two exploration algorithms were developed to guide the exploration of the UAV. Both identify frontiers for exploration with the Dijkstra Frontier method using Dijkstra's Algorithm to identify a frontier with unknown space, and the other uses a bi-directional RRT to identify multiple frontiers for selection. The final algorithm developed was for to give the UGV partial plans when an entire plan is not yet found. This improves the overall mission tempo. The algorithm is designed to keep the UGV a safe distance from the unknown frontier to prevent backtracking. All the algorithms were tested in Gazebo using the ROS framework. The Dijkstra Frontier method was also tested on the hardware system. The results show the RRT Explore algorithm to work well for exploring the environment, performing equally or better than the Dijkstra Frontier method. The UGV partial plan method showed a decreased traveled distance for the UGV but increases in UGV mission time with more conservative distances from danger. Overall, the framework showed a good exploration of the environment and performs the intended missions.

Description
Keywords
Drone aircraft, UGV, Exploration, RRT
Citation
Collections