Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Vehicle Detection in Deep Learning

    Thumbnail
    View/Open
    Xiao_Y_T_2019.pdf (9.412Mb)
    Downloads: 204
    Date
    2019-07-08
    Author
    Xiao, Yao
    Metadata
    Show full item record
    Abstract
    Computer vision techniques are becoming increasingly popular. For example, face recognition is used to help police find criminals, vehicle detection is used to prevent drivers from serious traffic accidents, and written word recognition is used to convert written words into printed words. With the rapid development of vehicle detection given the use of deep learning techniques, there are still concerns about the performance of state-of-the-art vehicle detection techniques. For example, state-of-the-art vehicle detectors are restricted by the large variation of scales. People working on vehicle detection are developing techniques to solve this problem. This thesis proposes an advanced vehicle detection model, adopting one of the classical neural networks, which are the residual neural network and the region proposal network. The model utilizes the residual neural network as a feature extractor and the region proposal network to detect the potential objects' information.
    General Audience Abstract
    Computer vision techniques are becoming increasingly popular. For example, face recognition is used to help police find criminals, vehicle detection is used to prevent drivers from serious traffic accidents, and written word recognition is used to convert written words into printed words. With the rapid development of vehicle detection given the use of deep learning techniques, there are still concerns about the performance of state-of-the art vehicle detection techniques. For example, state-of-the-art vehicle detectors are restricted by the large variation of scales. People working on vehicle detection are developing techniques to solve this problem. This thesis proposes an advanced vehicle detection model, utilizing deep learning techniques to detect the potential objects’ information.
    URI
    http://hdl.handle.net/10919/91375
    Collections
    • Masters Theses [19662]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us