Show simple item record

dc.contributor.authorHersch, Nicole Susanen_US
dc.date.accessioned2019-08-14T08:00:26Z
dc.date.available2019-08-14T08:00:26Z
dc.date.issued2019-08-13
dc.identifier.othervt_gsexam:20955en_US
dc.identifier.urihttp://hdl.handle.net/10919/93052
dc.description.abstractReframing the Ditch explores the application of native canopy using green street tools as a method to move beyond minimums and improve biological diversity of stormwater conveyances in a way that is consistent with visual landscape preference theory. Small stream water quality impairment is an issue found in 83% of stream headwaters in the Eastern United States. The Clean Water Act (1972), which regulates pollutant discharge into U.S. surface waters, mandates that municipalities create an implementation plan to improve water quality of their impaired streams. Water quality impairment is often exacerbated when headwater streams flow through urban areas. Urban areas are concentrations of human activity and as such bring concentrations of impermeable surfaces and stormwater runoff. As development increases, dedicated space for stormwater changes. Natural flow patterns that interacted with stratified layers of native vegetation often become constrained to ditches and pipes with little or no vegetation within the conveyance corridor. Reframing the Ditch creates an approach to help municipalities improve water quality of headwater streams by addressing water quality in ditches before water reaches the stream. The objective of urban conveyance systems is to move stormwater runoff into waterways as quickly as possible. When we design these conveyances to simply minimize stormwater interference, we ignore the potential contribution this land has for our public urban systems. This project looks for an intermediary between minimums and maximums. Maximums, also known as restoration, allows for messy, dynamic systems that are not hydrologically or visually appropriate in most urban environments. This thesis reveals ditches as complex landscapes that require high preforming vegetation, which ultimately limits the number of native species suitable for such harsh environments. Additionally, the more impermeable an environment is and the farther a ditch is from the top of the watershed, the more stormwater runoff there is, and the more space is required to process water and improve water quality. Cost, lack of available vegetation and lack of space may limit the application of this design in most circumstances. However, there are appropriate landscapes where this design methodology can provide valuable insight for landscape implementation plans aimed at improving water quality, while also providing public space, enriching neighborhood aesthetics and highlighting the function of our urban drainage systems.en_US
dc.format.mediumETDen_US
dc.publisherVirginia Techen_US
dc.rightsThis item is protected by copyright and/or related rights. Some uses of this item may be deemed fair and permitted by law even without permission from the rights holder(s), or the rights holder(s) may have licensed the work for use under certain conditions. For other uses you need to obtain permission from the rights holder(s).en_US
dc.subjectwater qualityen_US
dc.subjectgreen streetsen_US
dc.subjectlandscape preferenceen_US
dc.subjectbiodiversityen_US
dc.subjectnative vegetationen_US
dc.subjectstormwater conveyancesen_US
dc.subjecturban ditchesen_US
dc.subjecttrees for stormwater managementen_US
dc.titleReframing the Ditchen_US
dc.typeThesisen_US
dc.contributor.departmentLandscape Architectureen_US
dc.description.degreeMaster of Landscape Architectureen_US
thesis.degree.nameMaster of Landscape Architectureen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineLandscape Architectureen_US
dc.contributor.committeechairClements, Terry Lynnen_US
dc.contributor.committeememberMiller, Patrick A.en_US
dc.contributor.committeememberKim, Mintaien_US
dc.description.abstractgeneralThe Environmental Protection Agency, through the Clean Water Act, dictates what is an appropriate level of contamination in streams and rivers within the United States. Waterway impairment is a widespread issue affecting 83% of headwater streams in the Eastern United States. Improving the quality of headwater streams, the smallest parts of stream and river networks, is generally thought of as the first opportunity to improve water quality downstream. Reframing the Ditch suggests an alternate first opportunity by looking at how we can improve water quality by addressing design of the urban ditch. Urban ditches, mostly in the form or open channels or curb-and-gutters, collect and move stormwater runoff. Ditches, typically have little vegetation and work to more water as quickly and efficiently as possible. When we eliminate vegetation from urban ditches, we also eliminate valuable function. In natural stream processes, vegetation slows, filters, and infiltrates water, improving water quality, while also improving biodiversity and providing habitat. However, theses natural stream processes are dynamic and messy systems that are often not appropriate for urban settings. In order to define a design method that is appropriate for urban settings, Reframing the Ditch utilizes a green street toolkit to create a strong sense of place, while processing stormwater, within our public rights-of-way. By focusing on the application of native urban canopy within a drainage network, we can adhere to landscape preference and increase biodiversity. The design reveals that ditches are complex, context specific landscapes. While there is opportunity to increase utility of these spaces, there is complexity and cost to doing so. Layering utility into our stormwater conveyances is a valuable design strategy that serves individuals, neighborhoods, municipalities and watersheds. This project is an effort to help municipalities reframe their ditches, by providing ecological and social benefit, and ultimately improving water quality downstream.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record