Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Skyrmion relaxation dynamics in the presence of quenched disorder

    Thumbnail
    View/Open
    Published version (1.389Mb)
    Downloads: 88
    Date
    2019-07-09
    Author
    Brown, Barton L.
    Täuber, Uwe C.
    Pleimling, Michel J.
    Metadata
    Show full item record
    Abstract
    Using Langevin molecular dynamics simulations we study relaxation processes of interacting skyrmion systems with and without quenched disorder. Using the typical diffusion length as the time-dependent length characterizing the relaxation process, we find that clean systems always display dynamical scaling, and this even in cases where the typical length is not a simple power law of time. In the presence of the Magnus force, two different regimes are identified as a function of the noise strength. The Magnus force has also a major impact when attractive pinning sites are present, as this velocity-dependent force helps skyrmions to bend around defects and avoid caging effects. With the exception of the limit of large noise, for which dynamical scaling persists even in the presence of quenched disorder, attractive pinning sites capture a substantial fraction of skyrmions which results in a complex behavior of the two-time autocorrelation function that is not reproduced by a simple aging scaling ansatz.
    URI
    http://hdl.handle.net/10919/96230
    Collections
    • All Faculty Deposits [3603]
    • Scholarly Works, Center for Soft Matter and Biological Physics [49]
    • Scholarly Works, Department of Physics [847]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us