Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    •   VTechWorks Home
    • VTechWorks Archives
    • VTechWorks Administration
    • All Faculty Deposits
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nucleation of spatiotemporal structures from defect turbulence in the two-dimensional complex Ginzburg-Landau equation

    Thumbnail
    View/Open
    Published version (1.958Mb)
    Downloads: 166
    Date
    2019-11-20
    Author
    Liu, Weigang
    Täuber, Uwe C.
    Metadata
    Show full item record
    Abstract
    We numerically investigate nucleation processes in the transient dynamics of the two-dimensional complex Ginzburg-Landau equation toward its "frozen" state with quasistationary spiral structures. We study the transition kinetics from either the defect turbulence regime or random initial configurations to the frozen state with a well-defined low density of quasistationary topological defects. Nucleation events of spiral structures are monitored using the characteristic length between the emerging shock fronts. We study two distinct situations, namely when the system is quenched either far from the transition limit or near it. In the former deeply quenched case, the average nucleation time for different system sizes is measured over many independent realizations. We employ an extrapolation method as well as a phenomenological formula to account for and eliminate finite-size effects. The nonzero (dimensionless) barrier for the nucleation of single spiral droplets in the extrapolated infinite system size limit suggests that the transition to the frozen state is discontinuous. We also investigate the nucleation of spirals for systems that are quenched close to but beyond the crossover limit and of target waves which emerge if a specific spatial inhomogeneity is introduced. In either of these cases, we observe long, "fat" tails in the distribution of nucleation times, which also supports a discontinuous transition scenario.
    URI
    http://hdl.handle.net/10919/96231
    Collections
    • All Faculty Deposits [3603]
    • Scholarly Works, Center for Soft Matter and Biological Physics [49]
    • Scholarly Works, Department of Physics [847]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us