Show simple item record

dc.contributor.authorBrooks, Matthew A.en_US
dc.date.accessioned2011-08-06T16:01:18Z
dc.date.available2011-08-06T16:01:18Z
dc.date.issued2004-02-04en_US
dc.identifier.otheretd-042299-143911en_US
dc.identifier.urihttp://hdl.handle.net/10919/9858
dc.description.abstractNumerous wastewater treatment processes are currently available for nitrogen removal or ammonia conversion to nitrate. Those that are economically feasible rely mostly on microbiological processes, which are only effective when the microorganisms remain in a healthy state. If a biological process upset was to occur, due to a toxic shock load or cold weather, it may result in a discharge of ammonia or total nitrogen into the receiving water body. The impact of such a discharge could have deleterious effects on aquatic life or human health. The main objective of the breakpoint pilot study was to define optimum breakpoint pilot plant operating conditions which could then be applied to the design of a full scale breakpoint facility and serve as an emergency backup to biological nitrification. A pilot study was built on site at the Upper Occoquan Sewage Authority's Regional Water Reclamation Facility in Centreville Virginia. Testing was conducted in two phases (I and II) over a two year period in order to determine the operating conditions at which the breakpoint reaction performed best. Tests were performed during Phase I to determine the optimum operating pH, Cl₂:NH₃-N dose ratio, S0₂:Cl₂ dose ratio, and the minimum detention time for completion of the breakpoint reaction. Other testing done during Phase I included several special studies; including examination of appropriate analytical methods for monitoring breakpoint reactions, and investigation of the breakpoint reaction by-product nitrogen trichloride. Phase II testing examined how varying breakpoint operating temperatures, varying influent ammonia concentrations, higher influent organic nitrogen concentrations, and higher influent nitrite concentrations influenced the performance of the breakpoint pilot operation. Averages of data from operation at three different rapid mix pHs (7.0, 7.5, and 8.0) showed that pilot performance (i.e., ammonia oxidation) improved and the reaction was more stable at the higher operating pHs 7.5 and 8.0. Examination of dose ratios used during the study showed that the ideal operating ratios for this particular water was around 8:1 Cl₂:NH₃-N for the breakpoint reaction and 1.3:1 S0₂:Cl₂ for the dechlorination reaction. Although detention times for completion of the breakpoint reaction varied with pilot influent temperature, it generally required around 30-35 minutes to reach ammonia concentrations of < 0.2 mg/L NH₃-N at 8-12°C. Completion of the breakpoint reaction was found to be quickest at 20°C (the highest water temperature tested at the pilot). The tests of varying influent ammonia concentrations showed that although higher influent ammonia concentrations (11.0 mg/L) resulted in faster ammonia oxidation rates initially, the pilot operated better and had the same final performance results when the influent ammonia was lowered. Increasing the organic nitrogen concentrations (~ 1.0 mg/L) in the pilot influent resulted in a slightly higher Cl₂:NH₃-N dose ratio needed to reach breakpoint, a higher S0₂:Cl₂ dose needed to dechlorinate, and resulted in the formation of numerous disinfection byproducts. Increasing the nitrite concentration in the pilot influent increased the chlorination dose requirement.en_US
dc.format.mediumETDen_US
dc.publisherVirginia Techen_US
dc.relation.haspartthesis4.pdfen_US
dc.rightsI hereby grant to Virginia Tech or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.en_US
dc.subjectnitrogen trichlorideen_US
dc.subjectammoniaen_US
dc.subjectchlorineen_US
dc.subjectbreakpointen_US
dc.titleBreakpoint Chlorination as an Alternate means for Ammoia-Nitrogen removal at a Water Reclamation Planten_US
dc.typeThesisen_US
dc.contributor.departmentCivil Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineCivil Engineeringen_US
dc.contributor.committeechairGodrej, Adil N.en_US
dc.contributor.committeememberAngelotti, Roberten_US
dc.contributor.committeememberGrizzard, Thomas J.en_US
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-042299-143911en_US
dc.date.sdate1999-04-22en_US
dc.date.rdate2000-04-28
dc.date.adate1999-04-28en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record